Skip to main content
Log in

Enhanced separation of tetrafluoropropanol from water via carbon nanotubes membranes: insights from molecular dynamics simulations

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Fluorinated alcohols exhibit promising prospects in chemical industry because of their special structure and many exciting properties, in which tetrafluoropropanol (TFP) is extensive applied in synthesis of pesticides, dyestuffs, variety of solvents and detergents. However, the presence of TFP in water garners increasing attention globally because of their intrinsic potential to threat ecosystems and human health. Carbon nanotubes (CNTs) membranes are burgeoning candidates for TFP-water separation owing to well-endowed extraordinary structural and transport properties. However, a grand challenge lies in the rational design of CNTs for improving separation performance. Herein, molecular dynamics (MD) simulations were performed to investigate the effects of various parameters on the separation of TFP-water mixtures including feed temperature, CNTs pore diameters, and fluorine functionalization position. It was found that TFP was pre-selected in CNTs ranging from 9.48 to 18.98 Å due to preferential adsorption and diffusion mechanism. Excellent separation factor of 16 was achieved by (7,7) CNTs and the mass fraction of TFP was purified from 75% to 97.51%. Fluorine modified CNTs separated TFP and water by preferentially permeating water due to hydrogen bonding interaction. Simulation results showed that CNTs modified at both the entrance and interior had better separation performance than CNT modified only at one of these positions. The 100wt% water content in permeate was achieved by (11,11) CNTs modified with fluorine at the entrance and interior. These findings provide valuable insights for designing potential candidates for fluorinated alcohol-water azeotropic mixtures membrane separation, and promise extensive application aspects for the reclamation of fluorinated alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aydin S, Yesil H, Tugtas A E (2018). Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors. Bioresources and Bioprocessing, 250: 548–555

    CAS  Google Scholar 

  • Baig M I, Ingole P G, Jeon J D, Hong S U, Choi W K, Jang B, Lee H K (2019). Water vapor selective thin film nanocomposite membranes prepared by functionalized silicon nanoparticles. Desalination, 451(1): 59–71

    Article  CAS  Google Scholar 

  • Banihashemi F, Lin J Y S (2022). B-oriented MFI zeolite membranes for xylene isomer separation: effect of xylene activity on separation performance. Journal of Membrane Science, 652(15): 120492

    Article  CAS  Google Scholar 

  • Bano S, Mahmood A, Lee K H (2013). Vapor permeation separation of methanol–water mixtures: effect of experimental conditions. Industrial & Engineering Chemistry Research, 52(31): 10450–10459

    Article  CAS  Google Scholar 

  • Castellano R J, Praino R F, Meshot E R, Chen C, Fornasiero F, Shan J W (2020). Scalable electric-field-assisted fabrication of vertically aligned carbon nanotube membranes with flow enhancement. Carbon, 157: 208–216

    Article  CAS  Google Scholar 

  • Darve E, Rodríguez-Gómez D, Pohorille A (2008). Adaptive biasing force method for scalar and vector free energy calculations. Journal of Chemical Physics, 128(14): 144120–144133

    Article  Google Scholar 

  • Das R, Ali M E, Hamid S B A, Ramakrishna S, Chowdhury Z Z (2014). Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination, 336: 97–109

    Article  CAS  Google Scholar 

  • Delley B (1990). An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 92(1): 508–517

    Article  CAS  Google Scholar 

  • Fan W, He S, Wang Z, Zhao P, Gao J, Xu D, Wang Y (2022). Comparative evaluation of liquid–liquid equilibria for extraction of 2,2,3,3-tetrafluoro-1-propanol from water by a ZIF-8-porous ionic liquid. Journal of Chemical Technology and Biotechnology, 97(4): 933–942

    Article  CAS  Google Scholar 

  • Gao J, Zhao L, Zhang L, Xu D, Zhang Z (2016). Isobaric vapor–liquid equilibrium for binary systems of 2,2,3,3-tetrafluoro-1-propanol+2,2,3,3,4,4,5,5-octafluoro-1-pentanol at 53.3, 66.7, 80.0 kPa. Journal of Chemical & Engineering Data, 61(9): 3371–3376

    Article  CAS  Google Scholar 

  • Gupta K M, Liu J, Jiang J (2019). A molecular simulation protocol for membrane pervaporation. Journal of Membrane Science, 572: 676–682

    Article  CAS  Google Scholar 

  • Gupta O, Roy S, Mitra S (2020). Low temperature recovery of acetone-butanol-ethanol (ABE) fermentation products via microwave induced membrane distillation on carbon nanotube immobilized membranes. Sustainable Energy & Fuels, 4(7): 3487–3499

    Article  CAS  Google Scholar 

  • Hénin J, Fiorin G, Chipot C, Klein M L (2010). Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. Journal of Chemical Theory and Computation, 6(1): 35–47

    Article  Google Scholar 

  • Hu S Y, Zhang Y, Lawless D, Feng X (2012). Composite membranes comprising of polyvinylamine-poly(vinyl alcohol) incorporated with carbon nanotubes for dehydration of ethylene glycol by pervaporation. Journal of Membrane Science, 417–418: 34–44

    Article  Google Scholar 

  • Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W (2014). A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie, 126(27): 7049–7052

    Article  Google Scholar 

  • Ibrahim A, Lin Y S (2016). Pervaporation separation of organic mixtures by MOF-5 membranes. Industrial & Engineering Chemistry Research, 55(31): 8652–8658

    Article  CAS  Google Scholar 

  • Ihsanullah (2019). Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Separation and Purification Technology, 209: 307–337

    Article  CAS  Google Scholar 

  • Jia W, Murad S (2006). Molecular dynamics simulation of pervaporation in zeolite membranes. Molecular Physics, 104(19): 3033–3043

    Article  CAS  Google Scholar 

  • Kong W B, Miao Q, Qin P Y, Baeyens J, Tan T W (2017). Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression. Frontiers of Environmental Science & Engineering, 11(2): 166–176

    CAS  Google Scholar 

  • Li Q, Yang D, Shi J, Xu X, Yan S, Liu Q (2016). Biomimetic modification of large diameter carbon nanotubes and the desalination behavior of its reverse osmosis membrane. Desalination, 379: 164–171

    Article  CAS  Google Scholar 

  • Li Y, Li Y, Yang Z, Xu W, Gui T, Wu X, Zhu M, Chen X, Kita H (2023). Rapid synthesis of high-selective Al-rich beta zeolite membrane via an organic template-free route for pervaporation dehydration of water-n-butanol mixtures. Separation and Purification Technology, 308: 122969

    Article  CAS  Google Scholar 

  • Liu J P, Jin W Q (2021). Pervaporation membrane materials: recent trends and perspectives. Journal of Membrane Science, 636: 119557

    Article  CAS  Google Scholar 

  • Liu Q, Zhu H, Liu G, Jin W (2022a). Efficient separation of (C1-C2) alcohol solutions by graphyne membranes: a molecular simulation study. Journal of Membrane Science, 644: 120139

    Article  CAS  Google Scholar 

  • Liu S, Zhou G Y, Cheng G B, Wang X K, Liu G P, Jin W Q (2022b). Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation. Separation and Purification Technology, 299: 121729

    Article  CAS  Google Scholar 

  • Lo C H, Hung W S, Huang S H, Guzman M D, Rouessac V, Lee K R, Lai J Y (2009). Plasma deposition of tetraethoxysilane on polycarbonate membrane for pervaporation of tetrafluoropropanol aqueous solution. Journal of Membrane Science, 329(1–2): 138–145

    Article  CAS  Google Scholar 

  • Ma W, Jiang Z, Lu T, Xiong R, Huang C (2022). Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chemical Engineering Journal, 430(3): 132989

    Article  CAS  Google Scholar 

  • MacKerell A D, Bashford D, Bellott M, Dunbrack R L Jr, Evanseck J D, Field M J, Fischer S, Gao J, Guo H, Ha S, et al. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102(18): 3586–3616

    Article  CAS  Google Scholar 

  • Majumder M, Chopra N, Andrews R, Hinds B J (2005). Enhanced flow in carbon nanotubes. Nature, 438(44): 930

    Article  CAS  Google Scholar 

  • Meshkat S S, Ghasemy E, Rashidi A, Tavakoli O, Esrafili M (2021). Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: equilibrium & kinetic study. Frontiers of Environmental Science & Engineering, 15(5): 109

    Article  CAS  Google Scholar 

  • Panahi A, Shomali A, Sabour M H, Ghafar-Zadeh E (2019). Molecular dynamics simulation of electric field driven water and heavy metals transport through fluorinated carbon nanotubes. Journal of Molecular Liquids, 278: 658–671

    Article  CAS  Google Scholar 

  • Panahian S, Raisi A, Aroujalian A (2015). Multilayer mixed matrix membranes containing modified-MWCNTs for dehydration of alcohol by pervaporation process. Desalination, 355: 45–55

    Article  CAS  Google Scholar 

  • Perdew, Burke, Ernzerhof (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18): 3865–3868

    Article  CAS  Google Scholar 

  • Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16): 1781–1802

    Article  CAS  Google Scholar 

  • Raeisi Z, Moheb A, Arani M N, Sadeghi M (2021). Non-covalently-functionalized CNTs incorporating poly(vinyl alcohol) mixed matrix membranes for pervaporation separation of water-isopropanol mixtures. Chemical Engineering Research & Design, 167: 157–168

    Article  CAS  Google Scholar 

  • Schepers C, Hofmann D (2006). Molecular simulation study on sorption and diffusion processes in polymeric pervaporation membrane materials. Molecular Simulation, 32(2): 73–83

    Article  CAS  Google Scholar 

  • Shi P, Gao Y, Wu J, Xu D, Gao J, Ma X, Wang Y (2017). Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol+water): isobaric vapour-liquid phase equilibrium measurements and azeotropic distillation. Journal of Chemical Thermodynamics, 115: 19–26

    Article  CAS  Google Scholar 

  • Shi P, Xu D, Ding J, Wu J, Ma Y, Gao J, Wang Y (2018). Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol+water) via heterogeneous azeotropic distillation by energy-saving dividing-wall column: process design and control strategies. Chemical Engineering Research & Design, 135: 52–66

    Article  CAS  Google Scholar 

  • Therattil J A, S A K, Pothan L A, Maria H J, Kalarikal N, Thomas S (2021). Natural rubber/carbon nanotube/ionic liquid composite membranes: vapor permeation and gas permeability properties. Macromolecular Symposia, 398(1): 2000222

    Article  CAS  Google Scholar 

  • Tseng C, Liu Y L (2023). Poly(vinyl alcohol)/carbon nanotube (CNT) membranes for pervaporation dehydration: the effect of functionalization agents for CNT on pervaporation performance. Journal of Membrane Science, 668: 121185

    Article  CAS  Google Scholar 

  • Vane L, Namboodiri V, Lin G, Abar M, Alvarez F (2016). Preparation of water-selective polybutadiene membranes and their use in drying alcohols by pervaporation and vapor permeation technologies. ACS Sustainable Chemistry & Engineering, 4(8): 4442–4450

    Article  CAS  Google Scholar 

  • Wei F, Diao B, Gao J, Xu D, Zhang L, Ma Y, Wang Y (2021a). Process design, evaluation and control for separation of 2,2,3,3-tetrafluoro-1-propanol and water by extractive distillation using ionic liquid 1-ethyl-3-methylimidazolium acetate. Journal of Chemical Technology and Biotechnology, 96(11): 3175–3184

    Article  CAS  Google Scholar 

  • Wei S, Du L, Chen S, Yu H T, Quan X (2021b). Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance. Frontiers of Environmental Science & Engineering, 15(1): 11

    Article  CAS  Google Scholar 

  • Wu Y, Ding L, Lu Z, Deng J, Wei Y (2019). Two-dimensional MXene membrane for ethanol dehydration. Journal of Membrane Science, 590: 117300

    Article  CAS  Google Scholar 

  • Xu D, Zhang L, Gao J, Pratik D, Zhao L, Cui Z (2017). Liquid-liquid equilibrium for ternary systems of ethyl acetate/isopropyl acetate+2,2,3,3-tetrafluoro-1-propanol+water at 298.15, 318.15 K. Journal of Chemical Thermodynamics, 106: 218–227

    Article  CAS  Google Scholar 

  • Xu D, Zhang L, Gao J, Zhang Z S, Cui Z F (2016). Measurement and correlation of liquideliquid equilibrium for the ternary system 2,2,3,3,4,4,5,5-octafluoro-1-pentanol+methanol+water at (298.15, 308.15, and 318.15 K). Fluid Phase Equilibria, 409: 377–382

    Article  CAS  Google Scholar 

  • Xu Q, Jiang J (2019). Effects of functionalization on the nanofiltration performance of PIM-1: molecular simulation investigation. Journal of Membrane Science, 591: 117357

    Article  Google Scholar 

  • Xu Y, Hu Z, Liu Z, Zhu H, Yan Y, Xu J, Yang C (2021). Molecular simulations on tuning the interlayer spacing of graphene nanoslits for C4H6/C4H10 separation. ACS Applied Nano Materials, 4(2): 1994–2001

    Article  CAS  Google Scholar 

  • Yang D, Cheng C, Bao M, Chen L, Bao Y, Xue C (2019). The pervaporative membrane with vertically aligned carbon nanotube nanochannel for enhancing butanol recovery. Journal of Membrane Science, 577: 51–59

    Article  CAS  Google Scholar 

  • Yang D, Liu Q, Li H, Gao C (2013). Molecular simulation of carbon nanotube membrane for Li+ and Mg2+ separation. Journal of Membrane Science, 444: 327–331

    Article  CAS  Google Scholar 

  • Yang D, Tian D, Xue C, Gao F, Liu Y, Li H, Bao Y, Liang J, Zhao Z, Qiu J (2018). Tuned fabrication of the aligned and opened CNT membrane with exceptionally high permeability and selectivity for bioalcohol recovery. Nano Letters, 18(10): 6150–6156

    Article  CAS  Google Scholar 

  • Yang G, Xie Z, Doherty C M, Cran M, Ng D, Gray S (2020). Understanding the transport enhancement of poly (vinyl alcohol) based hybrid membranes with dispersed nanochannels for pervaporation application. Journal of Membrane Science, 603(15): 118005

    Article  CAS  Google Scholar 

  • Yen H W, Chen Z H, Yang I K (2012). Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (CNTs) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum. Bioresource Technology, 109: 105–109

    Article  CAS  Google Scholar 

  • Zhang L Z, Xu D M, Gao J, Zhao L W, Zhang Z S, Li C L (2016a). Measurements and correlations of density, viscosity, and vapour-liquid equilibrium for fluoro alcohols. Journal of Chemical Thermodynamics, 102: 155–163

    Article  CAS  Google Scholar 

  • Zhang N, Song Y, Ruan X, Yan X, Liu Z, Shen Z, Wu X, He G (2016b). Structural characteristics of hydrated protons in the conductive channels: effects of confinement and fluorination studied by molecular dynamics simulation. Physical Chemistry Chemical Physics, 18(35): 24198–24209

    Article  CAS  Google Scholar 

  • Zhang W, Xu Z, Yang X (2019). Molecular simulation of penetration separation for ethanol/water mixtures using two-dimensional nanoweb graphynes. Chinese Journal of Chemical Engineering, 27(2): 286–292

    Article  CAS  Google Scholar 

  • Zhao L, Wang Z, Yang H, Xu D, Zhang L, Gao J, Wang Y (2020). Separation of azeotrope 2,2,3,3-tetrafluoro-1-propanol and water: liquid-liquid equilibrium measurements and interaction exploration. Journal of Chemical Thermodynamics, 142: 106011

    Article  CAS  Google Scholar 

  • Zhu F, Tajkhorshid E, Schulten K (2002). Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophysical Journal, 83(1): 154–160

    Article  CAS  Google Scholar 

  • Zhu F, Tajkhorshid E, Schulten K (2004). Theory and simulation of water permeation in aquaporin-1. Biophysical Journal, 86(1): 50–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation (Nos. ZR2020MB118 and ZR2020QB175), the National Natural Science Foundation of China (Nos. 2197080534, 22008143, and 52070123), the State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (No. 2022-K10), the Project funded by China Postdoctoral Science Foundation (No. 2022M711958) and the Applied Research Project of Qingdao Postdoctoral (No. 01020240119), the China Postdoctoral Science Foundation (No. 2022M720083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhun Ma, Dongmei Xu or Xueli Gao.

Additional information

Conflict of Interest

The authors declare no competing interests.

Highlights

• MD simulations unveil the transport mechanism for TFP-water mixture through CNTs.

• The (7,7) CNTs provided a dramatic mass fraction (97.51%) of TFP.

• Fluorine modified CNTs favor water preferential transport compare to pristine CNTs.

• CNTs modified at entrance and interior prompt permselectivity for water molecules.

Supporting Information

11783_2023_1740_MOESM1_ESM.pdf

Enhanced separation of tetrafluoropropanol from water via carbon nanotubes membranes: insights from molecular dynamics simulations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, X., Liu, Y. et al. Enhanced separation of tetrafluoropropanol from water via carbon nanotubes membranes: insights from molecular dynamics simulations. Front. Environ. Sci. Eng. 17, 140 (2023). https://doi.org/10.1007/s11783-023-1740-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-023-1740-y

Keywords

Navigation