Skip to main content
Log in

Succinonitrile broadening the temperature range of Li/CFx primary batteries

采用丁二腈拓宽Li/CFx一次电池的使用温度范围

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In lithium primary batteries, fluorinated carbon (CFx) cathode has attracted enormous attention due to its high energy density. However, the CFx cathode reveals capacity fading sharply at low temperature. In this work, succinonitrile (SN) is used as an electrolyte additive to achieve excellent discharge performance at the temperature range from −20 °C to 60 °C. The obvious enhancement of electrochemical performances is attributed to the participation of succinonitrile in the formation of solid electrolyte interphase, which reduces the electrochemical impedance of battery. It is found that the electrolyte with 10% succinonitrile shows higher discharge platform and specific capacity at low temperature. Compared with the electrolyte without additive, the corresponding discharge capacity is enhanced from 398.8 mA·h/g to 527.3 mA·h/g at 0 °C. This work provides a convenient and lower-viscosity electrolyte system to improve the Li/CFx primary batteries applications in widen-temperature.

摘要

在锂离子一次电池中,氟化碳(CFx)正极因具备高能量密度而广受关注。然而,低温下CFx正极的放电比容量急剧衰减。本研究采用丁二腈(SN)作为电解液添加剂,提高了−20 °C ∼ 60 °C宽温范围内的放电性能。实验结果表明,以0.5C倍率放电时,60 °C、40 °C、25 °C、0 °C、−10 °C和−20 °C的放电比容量分别是869.9 mA·h/g、801.9 mA·h/g、761.8 mA·h/g、527.3 mA·h/g、299.4 mA·h/g、140.7 mA·h/g,明显高于无添加剂的放电比容量792 mA·h/g、766.6 mA·h/g、723.6 mA·h/g、398.8 mA·h/g、207 mA·h/g、137.7 mA·h/g。由于丁二腈参与了固体电解质中间相的形成,有效地降低了电化学阻抗,加快了放电反应动力学,改善了电池的低温电化学性能。同时,SN改善了低温下电解液与隔膜之间的相容性,提高了Li+的迁移扩散速率。本研究提供了一种方便、低黏度的电解液体系,拓宽了Li/CFx一次电池在宽温域下的应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. CHENG Xin-bing, ZHAO Chen-zi, YAO Yu-xing, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes [J]. Chem, 2019, 5(1): 74–96. DOI: https://doi.org/10.1016/j.chempr.2018.12.002.

    Article  Google Scholar 

  2. ZENG Lin-chao, QIU Ling, CHENG Hui-ming. Towards the practical use of flexible lithium ion batteries [J]. Energy Storage Materials, 2019, 23: 434–438. DOI: https://doi.org/10.1016/j.ensm.2019.04.019.

    Article  Google Scholar 

  3. TRESSAUD A, GROULT H. Fluorinated carbonaceous nanoparticles as active material in primary lithium battery [J]. Journal of Fluorine Chemistry, 2019, 219: 1–9. DOI: https://doi.org/10.1016/j.jfluchem.2018.12.007.

    Article  Google Scholar 

  4. WANG Jin, LI Yu-shan, LIU Peng, et al. Green large-scale production of N/O-dual doping hard carbon derived from bagasse as high-performance anodes for sodium-ion batteries [J]. Journal of Central South University, 2021, 28(2): 361–369. DOI: https://doi.org/10.1007/s11771-021-4608-y.

    Article  Google Scholar 

  5. CHEN Fu-ping, DI Yu-jie, SU Qiong, et al. Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries [J]. Carbon Energy, 2022, 5: e191. DOI: https://doi.org/10.1002/cey2.191.

    Google Scholar 

  6. REN Yong-huan, YANG Chun-wei, WU Bo-rong, et al. Novel low-temperature electrolyte for Li-ion battery [J]. Advanced Materials Research, 2011, 287–290: 1283–1289. DOI: https://doi.org/10.4028/www.scientific.net/amr.287-290.1283.

    Article  Google Scholar 

  7. FANG Zhong, YANG Yang, ZHENG Tian-le, et al. An all-climate CFx/Li battery with mechanism-guided electrolyte [J]. Energy Storage Materials, 2021, 42: 477–483. DOI: https://doi.org/10.1016/j.ensm.2021.08.002.

    Article  Google Scholar 

  8. LOGAN E R, TONITA E M, GERING K L, et al. A study of the physical properties of Li-ion battery electrolytes containing esters [J]. Journal of the Electrochemical Society, 2018, 165(2): A21–A30. DOI: https://doi.org/10.1149/2.0271802jes.

    Article  Google Scholar 

  9. LI Qiu-yan, JIAO Shu-hong, LUO Lang-li, et al. Wide-temperature electrolytes for lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18826–18835. DOI: https://doi.org/10.1021/acsami.7b04099.

    Article  Google Scholar 

  10. XU Kang. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chemical Reviews, 2004, 104(10): 4303–4417. DOI: https://doi.org/10.1021/cr030203g.

    Article  Google Scholar 

  11. FAN Xiu-lin, JI Xiao, CHEN Long, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents [J]. Nature Energy, 2019, 4(10): 882–890. DOI: https://doi.org/10.1038/s41560-019-0474-3.

    Article  Google Scholar 

  12. LI Qiu-yan, LU Dong-ping, ZHENG Jian-ming, et al. Li+-desolvation dictating lithium-ion battery’s low-temperature performances [J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42761–42768. DOI: https://doi.org/10.1021/acsami.7b13887.

    Article  Google Scholar 

  13. JOW T R, MARX M B, ALLEN J L. Distinguishing Li+ charge transfer kinetics at NCA/electrolyte and graphite/electrolyte interfaces, and NCA/electrolyte and LFP/electrolyte interfaces in Li-ion cells [J]. Journal of the Electrochemical Society, 2012, 159(5): A604–A612. DOI: https://doi.org/10.1149/2.079205jes.

    Article  Google Scholar 

  14. HOLOUBEK J, YU Ming-yu, YU Si-cen, et al. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation [J]. ACS Energy Letters, 2020, 5(5): 1438–1447. DOI: https://doi.org/10.1021/acsenergylett.0c00643.

    Article  Google Scholar 

  15. RODRIGUES M T F, BABU G, GULLAPALLI H, et al. A materials perspective on Li-ion batteries at extreme temperatures [J]. Nature Energy, 2017, 2: 17108. DOI: https://doi.org/10.1038/nenergy.2017.108.

    Article  Google Scholar 

  16. HAMENU L, LEE H S, LATIFATU M, et al. Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries [J]. Current Applied Physics, 2016, 16(6): 611–617. DOI: https://doi.org/10.1016/j.cap.2016.03.012.

    Article  Google Scholar 

  17. ZHU Gao-long, WEN Ke-chun, LV Wei-qiang, et al. Materials insights into low-temperature performances of lithium-ion batteries [J]. Journal of Power Sources, 2015, 300: 29–40. DOI: https://doi.org/10.1016/j.jpowsour.2015.09.056.

    Article  Google Scholar 

  18. ZHANG Sheng-shui. A review on electrolyte additives for lithium-ion batteries [J]. Journal of Power Sources, 2006, 162(2): 1379–1394. DOI: https://doi.org/10.1016/j.jpowsour.2006.07.074.

    Article  Google Scholar 

  19. SULEMAN M, KUMAR Y, HASHMI S A. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions [J]. Materials Chemistry and Physics, 2015, 163: 161–171. DOI: https://doi.org/10.1016/j.matchemphys.2015.07.026.

    Article  Google Scholar 

  20. ZHANG Qing-qing, LIU Kai, DING Fei, et al. Enhancing the high voltage interface compatibility of LiNi0.5Co0.2Mn0.3O2 in the succinonitrile-based electrolyte [J]. Electrochimica Acta, 2019, 298: 818–826. DOI: https://doi.org/10.1016/j.electacta.2018.12.104.

    Article  Google Scholar 

  21. RATAN A, BURAIDAH M H, TEO L P, et al. Enhanced photo-current conversion efficiency by incorporation of succinonitrile in N-Phthaloylchitosan based bio-polymer electrolyte for dye sensitized solar cell [J]. Optik, 2020, 222: 165467. DOI: https://doi.org/10.1016/j.ijleo.2020.165467.

    Article  Google Scholar 

  22. LIAO Bo, LI Hong-ying, XU Meng-qing, et al. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries [J]. Advanced Energy Materials, 2018, 8(22): 1800802. DOI: https://doi.org/10.1002/aenm.201800802.

    Article  Google Scholar 

  23. YANG Bo-wen, ZHANG Hong, YU Le, et al. Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells [J]. Electrochimica Acta, 2016, 221: 107–114. DOI: https://doi.org/10.1016/j.electacta.2016.10.037.

    Article  Google Scholar 

  24. IGNATOVA A A, YARMOLENKO O V, TULIBAEVA G Z, et al. Influence of 15-crown-5 additive to a liquid electrolyte on the performance of Li/CFx—Systems at temperatures up to −50 °C [J]. Journal of Power Sources, 2016, 309: 116–121. DOI: https://doi.org/10.1016/j.jpowsour.2016.01.075.

    Article  Google Scholar 

  25. LI Quan, XUE Wei-ran, SUN Xiao-rui, et al. Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries [J]. Energy Storage Materials, 2021, 38: 482–488. DOI: https://doi.org/10.1016/j.ensm.2021.03.024.

    Article  Google Scholar 

  26. LIU Zhe-xuan, LUO Xiong-bin, QIN Li-ping, et al. Progress and prospect of low-temperature zinc metal batteries [J]. Advanced Powder Materials, 2022, 1(2): 100011. DOI: https://doi.org/10.1016/j.apmate.2021.10.002.

    Article  Google Scholar 

  27. BAN Jun, JIAO Xing-xing, FENG Yang-yang, et al. All-temperature, high-energy-density Li/CFx batteries enabled by a fluorinated ether as a cosolvent [J]. ACS Applied Energy Materials, 2021, 4(4): 3777–3784. DOI: https://doi.org/10.1021/acsaem.1c00177.

    Article  Google Scholar 

  28. LUO Zhen-ya, WANG Xiao, CHEN Duan-wei, et al. Ultrafast Li/fluorinated graphene primary batteries with high energy density and power density [J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18809–18820. DOI: https://doi.org/10.1021/acsami.1c02064.

    Article  Google Scholar 

  29. GUO Shan, QIN Li-ping, ZHANG Teng-sheng, et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries [J]. Energy Storage Materials, 2021, 34: 545–562. DOI: https://doi.org/10.1016/j.ensm.2020.10.019.

    Article  Google Scholar 

  30. LIAO Li-xia, ZUO Peng-jian, MA Yu-lin, et al. Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode [J]. Electrochimica Acta, 2012, 74: 260–266. DOI: https://doi.org/10.1016/j.electacta.2012.04.085.

    Article  Google Scholar 

  31. ZUO Xiao-xi, DENG Xiao, MA Xiang-dong, et al. 3- (Phenylsulfonyl)propionitrile as a higher voltage bifunctional electrolyte additive to improve the performance of lithium-ion batteries [J]. Journal of Materials Chemistry A, 2018, 6(30): 14725–14733. DOI: https://doi.org/10.1039/C8TA04558E.

    Article  Google Scholar 

  32. LUO Zhen-ya, CHEN Duan-wei, WANG Xiao, et al. Accordion-like fluorinated graphite nanosheets with high power and energy densities for wide-temperature, long shelf-life sodium/potassium primary batteries [J]. Small (Weinheim an Der Bergstrasse, Germany), 2021, 17(20): e2008163. DOI: https://doi.org/10.1002/smll.202008163.

    Article  Google Scholar 

  33. WANG Wen-lian, YANG Tian-xiang, LI Shuai, et al. 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4) as an ionic liquid-type electrolyte additive to enhance the low-temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite batteries [J]. Electrochimica Acta, 2019, 317: 146–154. DOI: https://doi.org/10.1016/j.electacta.2019.05.027.

    Article  Google Scholar 

  34. CHEN Ren-jie, LIU Fan, CHEN Yan, et al. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries [J]. Journal of Power Sources, 2016, 306: 70–77. DOI: https://doi.org/10.1016/j.jpowsour.2015.10.105.

    Article  Google Scholar 

  35. ZHANG S S, FOSTER D, READ J. A low temperature electrolyte for primary Li/CFx batteries [J]. Journal of Power Sources, 2009, 188(2): 532–537. DOI: https://doi.org/10.1016/j.jpowsour.2008.12.030.

    Article  Google Scholar 

  36. WHITACRE J F, WEST W C, SMART M C, et al. Enhanced low-temperature performance of Li-CFx batteries [J]. Electrochemical and Solid-State Letters, 2007, 10(7): A166. DOI: https://doi.org/10.1149/1.2735823.

    Article  Google Scholar 

  37. JONES J P, JONES S C, KRAUSE F C, et al. Additive effects on Li∥CFx, and Li∥CFx-MnO2 Primary cells at low temperature [J]. Journal of the Electrochemical Society, 2017, 164(13): A3109–A3116. DOI: https://doi.org/10.1149/2.0831713jes.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XIE Shu-hong, ZHANG Qing-feng and PAN Jun-an formulated the research goals and programmes. LUO Zhen-ya and YANG Ying supervised the execution of research activities. WANG Ning, YUAN Tong and XIE Shu-hong were responsible for the initial manuscript writing.

Corresponding authors

Correspondence to Qing-feng Zhang  (张庆丰) or Shu-hong Xie  (谢淑红).

Additional information

Conflict of interest

WANG Ning, LUO Zhen-ya, ZHANG Qing-feng, PAN Jun-an, YUAN Tong, YANG Ying and XIE Shu-hong declare that they have no conflict of interest.

Foundation item: Project(2018RS3091) supported by the Hunan Innovation Team, China; Projects(52202308, 12105097) supported by the National Natural Science Foundation of China; Project(2021RC2092) supported by the Science and Technology Innovation Program of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Luo, Zy., Zhang, Qf. et al. Succinonitrile broadening the temperature range of Li/CFx primary batteries. J. Cent. South Univ. 30, 443–453 (2023). https://doi.org/10.1007/s11771-023-5251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5251-6

Key words

关键词

Navigation