Skip to main content
Log in

Temperature effect on shear behavior of ore-backfill coupling specimens at various shear directions

不同剪切方向作用下矿石-充填体耦合试样剪切行为的温度效应

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Understanding the temperature effect on shear behavior of the ore-backfill coupling structure is critical for the safety and stability of backfill stope under the condition of high horizontal stress in deep mining. Direct shear tests were carried out on the cemented rod-mill sand backfill (CRB) and ore-CRB (OCRB) coupling specimens at various temperatures (20, 40 and 60 °C). The shear behavior and AE characteristic parameters of OCRB at different shear directions were compared and analyzed. The results show that the temperature effect on the shear performance of CRB mainly depends on the characteristics of microstructures and main mineral phases; the performance of CRB at 40 °C is relatively good; the shear deformation of OCRB has one more “peak fluctuation stage” than CRB and has a good correlation with AE characteristic parameters. The temperature can positively or negatively impact the shear strength of OCRB, depending on the temperature and shear direction; the shear performance of OCRB along the axis direction (D1) is significantly better than that perpendicular to the axis direction (D2). The co-bearing capacity of the ore-backfill coupling structure (i.e., stopes) is closely related to the ambient temperature and principal stress orientation.

摘要

为了理解深部高水平应力条件下温度对矿石-充填体耦合结构体剪切特性的影响效应, 分别对不同温度(20, 40, 60 °C)下棒磨砂胶结充填体(CRB)和矿石-充填体耦合试样(OCRB)开展直剪试验, 并对不同剪切方向作用下OCRB 的剪切行为及AE 特征参数进行比较分析. 结果表明: 温度对CRB 剪切性能的影响主要取决于其微观结构和主要矿物相特性, 且在40 °C 时的性能相对较优; OCRB 的剪切变形较CRB 增加了“峰值波动阶段”, 且与AE 特征参数有良好的相关性, 温度对OCRB 的剪切强度既可以是正面影响也可以是负面影响, 这取决于温度值大小和剪切作用方向; 沿轴向(D1)方向OCRB 的剪切性能明显优于垂直于轴向(D2)方向的, 矿石-充填体耦合结构(即采场)的共同承载性能与环境温度和主应力方向密切相关.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SUN Wei, WANG Hong-jiang, HOU Ke-peng. Control of waste rock-tailings paste backfill for active mining subsidence areas [J]. Journal of Cleaner Production, 2018, 171: 567–579. DOI:https://doi.org/10.1016/j.jclepro.2017.09.253.

    Article  Google Scholar 

  2. SHESHPARI M. A review of underground mine backfilling methods with emphasis on cemented paste backfill [J]. Electronic Journal of Geotechnical Engineering, 2015, 20(13): 5183–5208.

    Google Scholar 

  3. QI Chong-chong, FOURIE A. Cemented paste backfill for mineral tailings management: Review and future perspectives [J]. Minerals Engineering, 2019, 144: 106025. DOI:https://doi.org/10.1016/j.mineng.2019.106025.

    Article  Google Scholar 

  4. LINGGA B A, APEL D B. Shear properties of cemented rockfills [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(4): 635–644. DOI:https://doi.org/10.1016/j.jrmge.2018.03.005.

    Article  Google Scholar 

  5. FALL M, BENZAAZOUA M, SAA E G. Mix proportioning of underground cemented tailings backfill [J]. Tunnelling and Underground Space Technology, 2008, 23(1): 80–90. DOI:https://doi.org/10.1016/j.tust.2006.08.005.

    Article  Google Scholar 

  6. BELEM T, BENZAAZOUA M, BUSSIÈRE B. Mechanical behaviour of cemented paste backfill [C]// Proc of 53rd Canadian Geotechnical Conference. Montreal, 2000: 373–380.

  7. LIU Lang, ZHOU Peng, FENG Yan, ZHANG Bo, SONG K I. Quantitative investigation on micro-parameters of cemented paste backfill and its sensitivity analysis [J]. Journal of Central South University, 2020, 27(1): 267–276. DOI:https://doi.org/10.1007/s11771-020-4294-1.

    Article  Google Scholar 

  8. WANG Yong, FALL M, WU Ai-xiang. Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate [J]. Cement and Concrete Composites, 2016, 67: 101–110. DOI:https://doi.org/10.1016/j.cemconcomp.2016.01.005.

    Article  Google Scholar 

  9. CUI Liang, FALL M. Mechanical and thermal properties of cemented tailings materials at early ages: Influence of initial temperature, curing stress and drainage conditions [J]. Construction and Building Materials, 2016, 125: 553–563. DOI:https://doi.org/10.1016/j.conbuildmat.2016.08.080.

    Article  Google Scholar 

  10. JIANG Hai-qiang, YI Hong-shun, YILMAZ E, LIU Shi-wei, QIU Jing-ping. Ultrasonic evaluation of strength properties of cemented paste backfill: Effects of mineral admixture and curing temperature [J]. Ultrasonics, 2020, 100: 105983. DOI:https://doi.org/10.1016/j.ultras.2019.105983.

    Article  Google Scholar 

  11. ALDHAFEERI Z, FALL M, POKHAREL M, POURAMINI Z. Temperature dependence of the reactivity of cemented paste backfill [J]. Applied Geochemistry, 2016, 72: 10–19. DOI:https://doi.org/10.1016/j.apgeochem.2016.06.005.

    Article  Google Scholar 

  12. NASIR O, FALL M. Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages [J]. Tunnelling and Underground Space Technology, 2010, 25(1): 9–20. DOI:https://doi.org/10.1016/j.tust.2009.07.008.

    Article  Google Scholar 

  13. FALL M, CÉLESTIN J C, POKHAREL M, TOURÉ M. A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill [J]. Engineering Geology, 2010, 114(3, 4): 397–413. DOI:https://doi.org/10.1016/j.enggeo.2010.05.016.

    Article  Google Scholar 

  14. FALL M, POKHAREL M. Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill [J]. Cement and Concrete Composites, 2010, 32(10): 819–828. DOI:https://doi.org/10.1016/j.cemconcomp.2010.08.002.

    Article  Google Scholar 

  15. WU Di, CAI Si-jing. Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill [J]. Journal of Central South University, 2015, 22(5): 1956–1964. DOI:https://doi.org/10.1007/s11771-015-2715-3.

    Article  Google Scholar 

  16. ZHOU Xiao-ping, LI Guo-qing, MA Hai-chun. Real-time experiment investigations on the coupled thermomechanical and cracking behaviors in granite containing three preexisting fissures [J]. Engineering Fracture Mechanics, 2020, 224: 106797. DOI:https://doi.org/10.1016/j.engfracmech.2019.106797.

    Article  Google Scholar 

  17. CHEN You-liang, NI Jing, SHAO Wei, AZZAM R. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 56: 62–66. DOI:https://doi.org/10.1016/j.ijrmms.2012.07.026.

    Article  Google Scholar 

  18. YANG Zhi-qiang. Key technology research on the efficient exploitation and comprehensive utilization of resources in the deep Jinchuan nickel deposit [J]. Engineering, 2017, 3(4): 559–566. DOI:https://doi.org/10.1016/J.ENG.2017.04.021.

    Article  Google Scholar 

  19. ZHAO Hai-jun, MA Feng-shan, ZHANG Ya-min, GUO Jie. Monitoring and mechanisms of ground deformation and ground fissures induced by cut-and-fill mining in the Jinchuan Mine 2, China [J]. Environmental Earth Sciences, 2013, 68(7): 1903–1911. DOI:https://doi.org/10.1007/s12665-012-1877-7.

    Article  Google Scholar 

  20. WANG Jun, HUANG Shang-yao, HUANG Ge-shan, WANG Ji-yang. Basic characteristics of the earth’s temperature distribution in Southern China [J]. Acta Geologica Sinica-English, 1986, 60(3): 91–106. DOI:https://doi.org/10.1111/j.1755-6724.1986.mp60003008.x.

    Google Scholar 

  21. ERCIKDI B, CIHANGIR F, KESIMAL A, DEVECI H, ALP İ. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings [J]. Journal of Hazardous Materials, 2009, 168(2, 3): 848–856. DOI:https://doi.org/10.1016/j.jhazmat.2009.02.100.

    Article  Google Scholar 

  22. DONG Qing, LIANG Bing, JIA Li-feng, JIANG Li-guo. Effect of sulfide on the long-term strength of lead-zinc tailings cemented paste backfill [J]. Construction and Building Materials, 2019, 200: 436–446. DOI:https://doi.org/10.1016/j.conbuildmat.2018.12.069.

    Article  Google Scholar 

  23. ZHOU Xiao-ping, ZHANG Jian-zhi, QIAN Qi-hu, NIU Yong. Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques [J]. Journal of Structural Geology, 2019, 126: 129–145. DOI:https://doi.org/10.1016/j.jsg.2019.06.003.

    Article  Google Scholar 

  24. ZHOU Xiao-ping, ZHANG Jian-zhi, BERTO F. Fracture analysis in brittle sandstone by digital imaging and AE techniques: Role of flaw length ratio [J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020085. DOI:https://doi.org/10.1061/(asce)mt.1943-5533.0003151.

    Article  Google Scholar 

  25. ZHANG Jian-zhi, ZHOU Xiao-ping, ZHOU Lun-shi, BERTO F. Progressive failure of brittle rocks with non-isometric flaws: Insights from acousto-optic-mechanical (AOM) data [J]. Fatigue & amp; Fracture of Engineering Materials & amp; Structures, 2019, 42(8): 1787–1802. DOI:https://doi.org/10.1111/ffe.13019.

    Article  Google Scholar 

  26. ZHANG Jian-zhi, ZHOU Xiao-ping. AE event rate characteristics of flawed granite: From damage stress to ultimate failure [J]. Geophysical Journal International, 2020, 222(2): 795–814. DOI:https://doi.org/10.1093/gji/ggaa207.

    Article  Google Scholar 

  27. KESHAVARZ M, PELLET F L, HOSSEINI K A. Comparing the effectiveness of energy and hit rate parameters of acoustic emission for prediction of rock failure [C]// ISRM International Symposium on Rock Mechanics-SINOROCK 2009. Hong Kong, China, 2009: ISRM-SINOROCK-2009-044.

  28. MENG Fan-zhen, WONG L N Y, ZHOU Hui, YU Jin, CHENG Guang-tan. Shear rate effects on the post-peak shear behaviour and acoustic emission characteristics of artificially split granite joints [J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2155–2174. DOI:https://doi.org/10.1007/s00603-018-1722-8.

    Article  Google Scholar 

  29. ZHANG Jian-zhi, ZHOU Xiao-ping. Forecasting catastrophic rupture in brittle rocks using precursory AE time series [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2019JB019276. DOI:https://doi.org/10.1029/2019JB019276.

    Google Scholar 

  30. WU Di, ZHAO Run-kang, QU Chun-lai. Effect of curing temperature on mechanical performance and acoustic emission properties of cemented coal gangue-fly ash backfill [J]. Geotechnical and Geological Engineering, 2019, 37(4): 3241–3253. DOI:https://doi.org/10.1007/s10706-019-00839-8.

    Article  Google Scholar 

  31. KIM J S, LEE K S, CHO W J, CHOI H J, CHO G C. A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessments of brittle rock [J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 495–508. DOI:https://doi.org/10.1007/s00603-014-0590-0.

    Article  Google Scholar 

  32. JIANG Fei-fei, ZHOU Hui, SHENG Jia, KOU Yong-yuan, LI Xiang-dong. Effects of temperature and age on physicomechanical properties of cemented gravel sand backfills [J]. Journal of Central South University, 2020, 27(10): 2999–3012. DOI:https://doi.org/10.1007/s11771-020-4524-6.

    Article  Google Scholar 

  33. BARTON N. A review of mechanical over-closure and thermal over-closure of rock joints: Potential consequences for coupled modelling of nuclear waste disposal and geothermal energy development [J]. Tunnelling and Underground Space Technology, 2020, 99: 103379. DOI: https://doi.org/10.1016/j.tust.2020.103379.

    Article  Google Scholar 

  34. BAREITHER C A, BENSON C H, EDIL T B. Comparison of shear strength of sand backfills measured in small-scale and large-scale direct shear tests [J]. Canadian Geotechnical Journal, 2008, 45(9): 1224–1236. DOI:https://doi.org/10.1139/t08-058.

    Article  Google Scholar 

  35. SUITS L D, SHEAHAN T C, NAKAO T, FITYUS S. Direct shear testing of a marginal material using a large shear box [J]. Geotechnical Testing Journal, 2008, 31(5): 101237. DOI:https://doi.org/10.1520/gtj101237.

    Article  Google Scholar 

  36. LI Li. Generalized solution for mining backfill design [J]. International Journal of Geomechanics, 2014, 14(3): 04014006. DOI:https://doi.org/10.1061/(asce)gm.1943-5622.0000329.

    Article  Google Scholar 

  37. XU Wen-bin, LI Qian-long, ZHANG Ya-lun. Influence of temperature on compressive strength, microstructure properties and failure pattern of fiber-reinforced cemented tailings backfill [J]. Construction and Building Materials, 2019,222:776–785. DOI:https://doi.org/10.1016/jconbuildmat2019.06.203.

    Article  Google Scholar 

  38. HAN Bin, ZHANG Sheng-you, SUN Wei. Impact of temperature on the strength development of the tailing-waste rock backfill of a gold mine [J]. Advances in Civil Engineering, 2019, 2019: 1–9. DOI:https://doi.org/10.1155/2019/4379606.

    Google Scholar 

  39. BERNIER R L, LI M G, MOERMAN A. Effects of tailings and binder geochemistry on the physical strength of paste backfill [C]// Proceeding of Sudburry’99. Sudbury, Canada, 1999: 1113–1122.

  40. LIU Lang, FANG Zhi-yu, QI Chong-chong, ZHANG Bo, GUO Li-jie, SONG K I. Experimental investigation on the relationship between pore characteristics and unconfined compressive strength of cemented paste backfill [J]. Construction and Building Materials, 2018, 179: 254–264. DOI:https://doi.org/10.1016/j.conbuildmat.2018.05.224.

    Article  Google Scholar 

  41. LI Wen-chen, FALL M. Sulphate effect on the early age strength and self-desiccation of cemented paste backfill [J]. Construction and Building Materials, 2016, 106: 296–304. DOI:https://doi.org/10.1016/j.conbuildmat.2015.12.124.

    Article  Google Scholar 

  42. SHANG J, ZHAO Z, MA S. On the shear failure of incipient rock discontinuities under CNL and CNS boundary conditions: Insights from DEM modelling [J]. Engineering Geology, 2018, 234: 153–166. DOI:https://doi.org/10.1016/j.enggeo.2018.01.012.

    Article  Google Scholar 

  43. THIRUKUMARAN S, INDRARATNA B. A review of shear strength models for rock joints subjected to constant normal stiffness [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 405–414. DOI:https://doi.org/10.1016/j.jrmge.2015.10.006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-fei Jiang  (江飞飞).

Additional information

Foundation item

Project(KFJ-STS-QYZD-174) supported by the Science and Technology Service Network Initiative of the Chinese Academy of Sciences; Projects(41941018, 42077251) supported by the National Natural Science Foundation of China; Project(P2018G045) supported by the Science & amp; Technology Research and Development Program of China Railway; Project(2018CFA013) supported by the Hubei Provincial Natural Science Foundation Innovation Group, China

Contributors

The overarching research goals were developed by JIANG Fei-fei and ZHOU Hui. JIANG Fei-fei, SHENG Jia, and KOU Yong-yuan conducted the laboratory tests and analyzed the experimental results. JIANG Fei-fei, ZHOU Hui, and LI Xiang-dong conducted the literature review and wrote the first draft of the manuscript. All the authors replied to reviewers’ comments and revised the final version.

Conflict of interest

JIANG Fei-fei, ZHOU Hui, SHENG Jia, LI Xiang-dong, and KOU Yong-yuan declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Ff., Zhou, H., Sheng, J. et al. Temperature effect on shear behavior of ore-backfill coupling specimens at various shear directions. J. Cent. South Univ. 28, 3173–3189 (2021). https://doi.org/10.1007/s11771-021-4841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4841-4

Key words

关键词

Navigation