Skip to main content
Log in

Effects of temperature and age on physico-mechanical properties of cemented gravel sand backfills

温度和龄期对砾石砂胶结充填体物理力学性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20–60 °C in the next few decades. In this paper, two types of cemented gravel sand backfills, cemented rod-mill sand backfill (CRB) and cemented gobi sand backfill (CGB), were prepared and cured at various temperatures (20, 40, 60 °C) and ages (3, 7, 28 d), and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests. Results show that: 1) the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures. The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages. 2) The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB. With the increase of temperature, the compressive failure modes changed from X-conjugate shear failure to tensile failure, and the integrity of specimens was significantly improved. 3) Similarly, the shear performance of CGB is generally better than that of CRB. The temperature has a weaker effect on shear strength than age, but the shear deformation and shear plane morphology are closely related to temperature.

摘要

深部矿山胶结充填体在未来数十年里将不可避免地会暴露在 20∼60 °C 的环境温度中. 本文制备了两种砾石砂胶结充填体, 即棒磨砂胶结充填体(CRB)和戈壁砂胶结充填体(CGB), 并分别在不同温度(20 °C、40 °C、60 °C)和龄期(3 d、7 d、28 d)条件下进行了养护;然后, 基于室内试验探索了温度和龄期对 CRB 和 CGB 物理力学特性的影响效应. 结果表明: 1) 温度和龄期对充填体物理力学特性的影响主要取决于水化产物量和胶结结构密实度, 温度对早期充填体热膨胀性和超声性能的影响更为显著; 2) 温度和龄期对 CGB 抗压强度的促进作用要强于 CRB, 随着温度的升高, 试样的压缩破坏形式由 X-共轭剪切破坏转变为拉伸破坏, 试样的完整性得到了显著改善; 3) 同样 CGB 的抗剪性能普遍优于CRB, 温度对充填体抗剪强度的影响较龄期要弱, 但剪切变形和剪切面破坏形态与温度密切相关.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JUNG S, BISWAS K. Review of current high density paste fill and its technology [J]. Mineral Resources Engineering, 2002, 11(2): 165–182. DOI: https://doi.org/10.1142/S0950609802000926.

    Article  Google Scholar 

  2. RANKINE R, PACHECO M, SIVAKUGAN N. Underground mining with backfills [J]. Soils and Rocks, 2007, 30(2): 93–101. https://www.researchgate.net/publication/279586585.

    Article  Google Scholar 

  3. TAN Yu-ye, DAVIDE E, ZHOU Yu-cheng, SONG Wei-dong, MENG Xiang Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading [J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(2): 140–151. DOI: https://doi.org/10.1007/s12613-019-1878-6.

    Article  Google Scholar 

  4. WU Di, CAI Si-jing, LIU Yu-cheng. Effects of binder on suction in cemented gangue backfill [J]. Magazine of Concrete Research, 2016, 68(12): 593–603. DOI: https://doi.org/10.1680/jmacr.15.00120.

    Article  Google Scholar 

  5. HE M C. Rock mechanics and hazard control in deep mining engineering in China [C]// Proceedings of the 4th Asian Rock Mechanics Symposium (ARMS 4). Singapore: World Scientific Publishing Co. Pte. Ltd. 2006: 29–46. DOI: https://doi.org/10.1142/97898127724110003.

    Google Scholar 

  6. SU Zhao-gui, JIANG Zhong-an, SUN Zhong-qiang. Study on the heat hazard of deep exploitation in high-temperature mines and its evaluation index [J]. Procedia Earth and Planetary Science, 2009, 1(1): 414–419. DOI: https://doi.org/10.1016/j.proeps.2009.09.066.

    Article  Google Scholar 

  7. YANG Xiao-jie, HAN Qiao-yun, PANG Jie-wen, SHI Xiao-wei, HOU Ding-gui, LIU Chao. Progress of heat-hazard treatment in deep mines [J]. Mining Science and Technology (China), 2011, 21(2): 295–299. DOI: https://doi.org/10.1016/j.mstc.2011.02.015.

    Article  Google Scholar 

  8. RANJITH P G, ZHAO Jian, JU Ming-he, de SILVA R V, RATHNAWEERA T D, BANDARA A K. Opportunities and challenges in deep mining: A brief review [J]. Engineering, 2017, 3(4): 546–551. DOI: https://doi.org/10.1016/J.ENG.2017.04.024.

    Article  Google Scholar 

  9. WANG C, TANNANT D, PADRUTT A, MILLETTE D. Influence of admixtures on cemented backfill strength [J]. Mineral Resources Engineering, 2002, 11(3): 261–270. DOI: https://doi.org/10.1142/S0950609802000963.

    Article  Google Scholar 

  10. BIAN Ji-wei, FALL M, HARUNA S. Sulfate-induced changes in rheological properties of fibre-reinforced cemented paste backfill [J]. Magazine of Concrete Research, 2019. DOI: https://doi.org/10.1680/jmacr.19.00311.

  11. FALL M, BENZAAZOUA M, SAA E. Mix proportioning of underground cemented tailings backfill [J]. Tunnelling and Underground Space Technology, 2008, 23(1): 80–90. DOI: https://doi.org/10.1016/j.tust.2006.08.005.

    Article  Google Scholar 

  12. ERCIKDI B, KESIMAL A, CIHANGIR F, DEVECI H, ALP I. Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage [J]. Cement and Concrete Composites, 2009, 31(4): 268–274. DOI: https://doi.org/10.1016/j.cemconcomp.2009.01.008.

    Article  Google Scholar 

  13. KLEIN K, SIMON D. Effect of specimen composition on the strength development in cemented paste backfill [J]. Canadian Geotechnical Journal, 2006, 43(3): 310–324. DOI: https://doi.org/10.1139/t06-005.

    Article  Google Scholar 

  14. WU Ai-xiang, WANG Yong, WANG Hong-jiang, YIN Sheng-hua, MIAO Xiu-xiu. Coupled effects of cement type and water quality on the properties of cemented paste backfill [J]. International Journal of Mineral Processing, 2015, 143: 65–71. DOI: https://doi.org/10.1016/j.minpro.2015.09.004.

    Article  Google Scholar 

  15. FALL M, POKHAREL M. Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: portland cement-paste backfill [J]. Cement and Concrete Composites, 2010, 32(10): 819–828. DOI: https://doi.org/10.1016/j.cemconcomp.2010.08.002.

    Article  Google Scholar 

  16. WU Di, CAI Si-jing. Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill [J]. Journal of Central South University, 2015, 22(5): 1956–1964. DOI: https://doi.org/10.1007/s11771-015-2715-3.

    Article  Google Scholar 

  17. ALDHAFEERI Z, FALL M, POKHAREL M, POURAMINI Z. Temperature dependence of the reactivity of cemented paste backfill [J]. Applied Geochemistry, 2016, 72: 10–19. DOI: https://doi.org/10.1016/j.apgeochem.2016.06.005.

    Article  Google Scholar 

  18. KERMANI M, HASSANI F, AFLAKI E, BENZAAZOUA M, NOKKEN M. Evaluation of the effect of sodium silicate addition to mine backfill, gelfill-part 2: Effects of mixing time and curing temperature [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(6): 668–673. DOI: https://doi.org/10.1016/j.jrmge.2015.09.004.

    Article  Google Scholar 

  19. CUI L, FALL M. Multiphysics modelling of the behaviour of cemented tailings backfill materials [C]// International Conference on Civil, Structural and Transportation Engineering. Ottawa, Ontario, Canada, 2015, 330: 331–337. https://www.researchgate.net/publication/277718249.

    Google Scholar 

  20. CUI Liang, FALL M. Multiphysics model for consolidation behavior of cemented paste backfill [J]. International Journal of Geomechanics, 2016, 17(3): 1–23. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000743.

    Google Scholar 

  21. YILMAZ E, BELEM T, BUSSIÈRE B, MBONIMPA M, BENZAAZOUA M. Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents [J]. Construction and Building Materials, 2015, 75: 99–111. DOI: https://doi.org/10.1016/j.conbuildmat.2014.11.008.

    Article  Google Scholar 

  22. YANG Zhi-qiang. Key technology research on the efficient exploitation and comprehensive utilization of resources in the deep Jinchuan nickel deposit [J]. Engineering, 2017, 3(4): 559–566. DOI: https://doi.org/10.1016/J.ENG.2017.04.021.

    Article  Google Scholar 

  23. BAREITHER C A, BENSON C H, EDIL T B. Comparison of shear strength of sand backfills measured in small-scale and large-scale direct shear tests [J]. Canadian Geotechnical Journal, 2008, 45(9): 1224–1236. DOI: https://doi.org/10.1139/T08-058.

    Article  Google Scholar 

  24. ZHANG Qin-li, CHEN Qiu-song, WANG Xin-ming. Cemented backfilling technology of paste-like based on aeolian sand and tailings [J]. Minerals, 2016, 6(4): 132. DOI: https://doi.org/10.3390/min6040132.

    Article  Google Scholar 

  25. LI Mao-hui, YANG Zhi-qiang, GAO Qian, WANG You-tuan. The orthogonal test and optimal decision for the development of new backfill cementing materials based on the rod milling sand [C]// Advanced Materials Research, Trans Tech Publ. 2014: 1100–1105. DOI: https://doi.org/10.4028/www.scientific.net/AMR.962-965.1100.

  26. ERCIKDI B, CIHANGIR F, KESIMAL A, DEVECI H, ALP İ. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings [J]. Journal of Hazardous Materials, 2009, 168(2, 3): 848–856. DOI: https://doi.org/10.1016/j.jhazmat.2009.02.100.

    Article  Google Scholar 

  27. DONG Qing, LIANG Bing, JIA Li-feng, JIANG Li-guo. Effect of sulfide on the long-term strength of lead-zinc tailings cemented paste backfill [J]. Construction and Building Materials, 2019, 200: 436–446. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.069.

    Article  Google Scholar 

  28. BERNIER R, LI M G, MOERMAN A. Effects of tailings and binder geochemistry on the physical strength of paste backfill [C]// Sudburry’99, Mining and the Environment II, Sudbury. Ontario, Canada, 1999, 3: 1113–1122. https://www.researchgate.net/publication/284674385.

    Google Scholar 

  29. LIU Lang, FANG Zhi-yu, QI Chong-chong, ZHANG Bo, GUO Li-jie, SONG K I. Experimental investigation on the relationship between pore characteristics and unconfined compressive strength of cemented paste backfill [J]. Construction and Building Materials, 2018, 179: 254–264. DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.224.

    Article  Google Scholar 

  30. LI Wen-cheng, FALL M. Sulphate effect on the early age strength and self-desiccation of cemented paste backfill [J]. Construction and Building Materials, 2016, 106: 296–304. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.124.

    Article  Google Scholar 

  31. LIU Lang, ZHOU Peng, FENG Yan, ZHANG Bo, SONG K I. Quantitative investigation on micro-parameters of cemented paste backfill and its sensitivity analysis [J]. Journal of Central South University, 2020, 27(1): 267–276. DOI: https://doi.org/10.1007/s11771-020-4294-1.

    Article  Google Scholar 

  32. FALL M, CÉLESTIN J, POKHAREL M, TOURé M. A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill [J]. Engineering Geology, 2010, 114(3, 4): 397–413. DOI: https://doi.org/10.1016/j.enggeo.2010.05.016.

    Article  Google Scholar 

  33. POKHAREL M, FALL M. Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill [J]. Cement and Concrete Composites, 2013, 38: 21–28. DOI: https://doi.org/10.1016/j.cemconcomp.2013.03.015.

    Article  Google Scholar 

  34. DZ/T 0276.25-2015. Regulation for testing the physical and mechanical properties of rock—part 25: Test for determining the shear strength of rock [S]. Beijing: Standards Press of China, 2015. (in Chinese)

    Google Scholar 

  35. GB 50021-2001. Code for investigation of geotechnical engineering (2009) [S]. Beijing: China Architecture & Building Press, 2009. (in Chinese)

    Google Scholar 

  36. ZHAO Hui, SUN Wei, WU Xiao-ming, GAO Bo. The effect of coarse aggregate gradation on the properties of self-compacting concrete [J]. Materials & Design, 2012, 40: 109–116. DOI: https://doi.org/10.1016/j.matdes.2012.03.035.

    Article  Google Scholar 

  37. MEDDAH M S, ZITOUNI S, BELâABES S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete [J]. Construction and Building Materials, 2010, 24(4): 505–512. DOI: https://doi.org/10.1016/j.conbuildmat.2009.10.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by ZHOU Hui and JIANG Fei-fei. JIANG Fei-fei, SHENG Jia, and KOU Yong-yuan conducted the laboratory tests and analyzed the experimental results. JIANG Fei-fei, ZHOU Hui, and LI Xiang-dong conducted the literature review and wrote the first draft of the manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Hui Zhou  (周辉).

Additional information

Conflict of interest

JIANG Fei-fei, ZHOU Hui, SHENG Jia, KOU Yong-yuan, and LI Xiang-dong declare that they have no conflict of interest.

Foundation item: Project(P2018G045) supported by the Science & Technology Research and Development Program of China Railway; Project(2018CFA013) supported by the Hubei Provincial Natural Science Foundation Innovation Group, China; Project(KFJ-STS-QYZD-174) supported by the Science and Technology Service Network Initiative of the Chinese Academy of Sciences; Project(51709257) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Ff., Zhou, H., Sheng, J. et al. Effects of temperature and age on physico-mechanical properties of cemented gravel sand backfills. J. Cent. South Univ. Technol. 27, 2999–3012 (2020). https://doi.org/10.1007/s11771-020-4524-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4524-6

Key words

关键词

Navigation