Skip to main content
Log in

Analytical solution of vacuum preloading technology combined with electroosmosis coupling considering impacts of distribution of soil’s electrical potential

考虑土体电势分布影响的真空预压联合电渗耦合解析解

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods. Many studies indicate that the soil electrical potential is non-linearly distributed in the treatment process by the combined method. However, in the previous theoretical study, the non-linear-distribution impacts of soil’s electrical potential on soft soil foundation treatment have not been considered. It is always assumed to be linear distribution, which is different from the experimental results. In this paper, the coupling consolidation model of this technology under the two-dimensional plane strain condition is initially established; and the well resistance effect, the vacuum load decreasing along the soil depth and the non-linear variation of electrical potential in the soil are considered. Then, the analytical solutions of the average excess pore water pressure and soil’s consolidation degree in the anode affected area are acquired based on the soil’s electrical potential distribution. Finally, the rationality of the analytical solution is testified by conducting an experimental model test, which proves the scientificity of the analytical solution. The analytical solution is adopted to better predict the dissipation of excess pore water pressure and soil consolidation degree when using the combined technology. This study can provide a reference with more accuracy for the engineering practices of this combined technology in the future.

摘要

真空预压联合电渗加固技术能够充分发挥真空预压法和电渗法的优势,进而有效改善软基处理 效果。研究表明,当采用真空预压联合电渗法加固软基时,土体电势呈现非线性分布规律。然而,目 前有关该联合加固技术的理论研究尚未考虑土体电势非线性分布对软基处理过程的影响且在理论推 导中通常假设土体电势为线性分布,显然,这与试验结果有所出入。对此,本文首先以阳极为研究对 象建立了二维平面应变条件下真空预压联合电渗法耦合固结模型。在模型中考虑了井阻效应、真空荷 载沿土层深度衰减以及土体电势非线性变化的影响。然后,基于实际土体电势分布规律分别给出了阳 极影响区域内平均超静孔隙水压力和土体固结度的理论解析解。最后,结合具体的模型试验案例对该 解析解的合理性进行了验证,证明了该解析解的准确性和科学性。该解析解能够合理预测真空预压联 合电渗法处理过程中超静孔隙水压力和土体固结度的变化情况,能够为真空预压联合电渗加固技术后 续的工程运用提供借鉴和参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIU Han-long, CUI Yun-liang, SHEN Yang, DING Xuanming. A new method of combination of electroosmosis, vacuum and surcharge preloading for soft ground improvement [J]. China Ocean Engineering, 2014, 28(4): 511–528. DOI: https://doi.org/10.1007/s13344-014-0042-3.

    Article  Google Scholar 

  2. TANG M, SHANG J Q. Vacuum preloading consolidation of Yaoqiang Airport runway [J]. Géotechnique, 2000, 50(6): 613–623. DOI: https://doi.org/10.1680/geot.2000.50.6.613.

    Article  Google Scholar 

  3. CHAI J C, CARTER J P, HAYASHI S. Vacuum consolidation and its combination with embankment loading [J]. Canadian Geotechnical Journal, 2006, 43(10): 985–996. DOI: https://doi.org/10.1139/T06-056.

    Article  Google Scholar 

  4. SAOWAPAKPIBOON J, BERGADO D T, VOOTTIPRUEX P, LAM L G, NAKAKUMA K. PVD improvement combined with surcharge and vacuum preloading including simulations [J]. Geotextiles and Geomembranes, 2011, 29(1): 74–82. DOI: https://doi.org/10.1016/j.geotexmem.2010.06.008.

    Article  Google Scholar 

  5. KIANFAR K, INDRARATNA B, RUJIKIATKAMJORN C. Radial consolidation model incorporating the effects of vacuum preloading and non-Darcian flow [J]. Géotechnique, 2013, 63(12): 1060–1073. DOI: https://doi.org/10.1680/geot.12.P.163.

    Article  Google Scholar 

  6. VOOTTIPRUEX P, BERGADO D T, LAM L G. Back-analyses of flow parameters of PVD improved soft Bangkok clay with and without vacuum preloading from settlement data and numerical simulations [J]. Geotextiles and Geomembranes, 2014, 42(5): 457–467. DOI: https://doi.org/10.1016/j.geotexmem.2014.07.004.

    Article  Google Scholar 

  7. LÓPEZ-ACOSTA N P, ESPINOSA-SANTIAGO A L, PINEDA-NÚÑEZ V M. Performance of a test embankment on very soft clayey soil improved with drain-to-drain vacuum preloading technology [J]. Geotextiles and Geomembranes, 2019, 47(5): 618–631. DOI: https://doi.org/10.1016/j.geotexmem.2019.103459.

    Article  Google Scholar 

  8. LIU Fei-yu, WU Wen-qing, FU Hong-tao. Application of flocculation combined with vacuum preloading to reduce river-dredged sludge [J]. Marine Georesources & Geotechnology, 2020, 38(2): 164–173. DOI: https://doi.org/10.1080/1064119X.2018.1564092.

    Article  Google Scholar 

  9. XU Gui-zhong, YIN Jie, FENG Xu-song, FENG J. An improved method for dewatering sewage sludge using intermittent vacuum loading with wheat straw as vertical drains [J]. KSCE Journal of Civil Engineering, 2020, 24(7): 2017–2025. DOI: https://doi.org/10.1007/s12205-020-2216-2.

    Article  Google Scholar 

  10. CAI Yuan-qiang, QIAO Huan-huan, WANG Jun. Experimental tests on effect of deformed prefabricated vertical drains in dredged soil on consolidation via vacuum preloading [J]. Engineering Geology, 2017, 222: 10–19. DOI: https://doi.org/10.1016/j.enggeo.2017.03.020.

    Article  Google Scholar 

  11. LEI Hua-yang, LU Hai-bin, LIU Jing-jin, ZHENG Gang. Experimental study of the clogging of dredger fills under vacuum preloading [J]. International Journal of Geomechanics, 2017, 17(12): 1–14. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001028.

    Article  Google Scholar 

  12. LI Jin-feng, CHEN Hui-e, YUAN Xiao-qing, SHAN Wenchong. Analysis of the effectiveness of the step vacuum preloading method: a case study on high clay content dredger fill in Tianjin, China [J]. Journal of Marine Science and Engineering, 2020, 8(1): 38. DOI: https://doi.org/10.3390/jmse8010038.

    Article  Google Scholar 

  13. ZHANG Wen-gang, GOH A T C, GOH K H. Performance of braced excavation in residual soil with groundwater drawdown [J]. Underground Space, 2018, 3(2): 150–165. DOI: https://doi.org/10.1016/j.undsp.2018.03.002.

    Article  Google Scholar 

  14. ZOU Wei-lie, YANG Jin-xing, WANG Zhao. Design methods of electro-kinetic geosynthetics for consolidation and soil reinforcement [J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 319–322. DOI: https://doi.org/10.3321/j.issn:1000-4548.2002.03.011. (in Chinese)

    Google Scholar 

  15. JONES C, LAMONT-BLACK J, HUNTLEY D. Electrokinetic geosynthetics: From research to hype to practice [C]// Proceedings of The Institution of Civil Engineers-Civil Engineering, 2017, 170(3): 127–134. DOI: https://doi.org/10.1680/jcien.16.00039.

    Article  Google Scholar 

  16. GLENDINNING S, LAMONT-BLACK J, JONES C J F P, HALL J. Treatment of lagooned sewage sludge in situ using electrokinetic geosynthetics [J]. Geosynthetics International, 2008, 15(3): 192–204. DOI: https://doi.org/10.1680/gein.2008.15.3.192.

    Article  Google Scholar 

  17. JONES C. Briefing: Electrokinetic geosynthetics: getting themost out of mud [J]. Proceedings of the Institution of Civil Engineers-Civil Engineering, 2004, 157(3): 103. DOI: https://doi.org/10.1680/cien.2004.157.3.103.

    Article  Google Scholar 

  18. LOCKHART N C. Electroosmotic dewatering of clays. I. Influence of voltage [J]. Colloids and Surfaces, 1983, 6(3): 229–238. DOI: https://doi.org/10.1016/0166-6622(83)80015-8.

    Article  Google Scholar 

  19. FU Hong-tao, FANG Zi-quan, WANG Jun. Experimental comparison of electroosmotic consolidation of Wenzhou dredged clay sediment using intermittent current and polarity reversal [J]. Marine Georesources & Geotechnology, 2018, 36(1): 131–138. DOI: https://doi.org/10.1080/1064119X.2017.1326992.

    Article  Google Scholar 

  20. FLORA A, GARGANO S, LIRER S, MELE L. Experimental evidences of the strengthening of dredged sediments by electroosmotic consolidation [J]. Geotechnical and Geological Engineering, 2017, 35(6): 2879–2890. DOI: https://doi.org/10.1007/s10706-017-0286-9.

    Article  Google Scholar 

  21. LI Ying, GONG Xiao-nan. Design method of electro-osmosis reinforcement for soft clay foundations [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 955–959. (in Chinese)

    Google Scholar 

  22. XIE Xin-yu, LIU Yi-min, ZHENG Ling-wei. Experimental study on the effect of soil saturation on the electric permeability coefficient during electroosmosis process [J]. Marine Georesources & Geotechnology, 2019, 37(10): 1188–1195. DOI: https://doi.org/10.1080/1064119X.2018.1540673.

    Article  Google Scholar 

  23. HU Jian-li, LI Xiao-bing, ZHANG Di-kang. Experimental study on the effect of additives on drainage consolidation in vacuum preloading combined with electroosmosis [J]. KSCE Journal of Civil Engineering, 2020, 24(9): 2599–2609. DOI: https://doi.org/10.1007/s12205-020-1900-6.

    Article  Google Scholar 

  24. ZHANG Heng, ZHOU Guo-xiang, WU Jun-liang. Mechanism for soil reinforcement by electroosmosis in the presence of calcium chloride [J]. Chemical Engineering Communications, 2017, 204(4): 424–433. DOI: https://doi.org/10.1080/00986445.2016.1273833.

    Article  Google Scholar 

  25. MALEKZADEH M, LOVISA J, NAGARATNAM S N. An overview of electrokinetic consolidation of soils [J]. Geotechnical and Geological Engineering, 2016, 34(3): 759–776. DOI: https://doi.org/10.1007/s10706-016-0002-1.

    Article  Google Scholar 

  26. SHEN Yang, FENG Jian-ting, SHI Wen, QIU Chen-chen. Consolidation behaviors of soft clay using vacuum preloading method in combination with electro-osmosis based on different shapes of EKG electrode [C]// International Conference on Geotechnical and Earthquake Engineering 2018: Geotechnical and Seismic Research and Practices for Sustainability (IACGE 2018). Chongqing, China: IACGE, 2019, GSP 304: 345–356. DOI: https://doi.org/10.1061/9780784482049.034.

    Google Scholar 

  27. MARTIN L, ALIZADEH V, MEEGODA J. Electro-osmosis treatment techniques and their effect on dewatering of soils, sediments, and sludge: A review [J]. Soils and Foundations, 2019, 59(2): 407–418. DOI: https://doi.org/10.1016/j.sandf.2018.12.015.

    Article  Google Scholar 

  28. WANG Bao-tian, VU M Q. Improvement of silty clay by vacuum preloading incorporated with electroosmotic method [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(4): 365–372. DOI: https://doi.org/10.3724/SP.J.1235.2010.00365.

    Google Scholar 

  29. ZHANG Wen-gang, WU Chong-zhi, ZHONG Hai-yi. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization [J]. Geoscience Frontiers, 2020, 12(1): 469–477. DOI: https://doi.org/10.1016/j.gsf.2020.03.007.

    Article  Google Scholar 

  30. PENG Jie, YE Han-ming, ALSHAWABKEH A N. Soil improvement by electroosmotic grouting of saline solutions with vacuum drainage at the cathode [J]. Applied Clay Science, 2015, 114: 53–60. DOI: https://doi.org/10.1016/j.clay.2015.05.012.

    Article  Google Scholar 

  31. WANG Liu-jiang, HUANG Peng-hua, LIU Si-hong, ALONSO E. Analytical solution for nonlinear consolidation of combined electroosmosis vacuum-surcharge preloading [J]. Computers & Geotechnics, 2020, 121: 1–14. DOI: https://doi.org/10.1016/j.compgeo.2020.103484.

    Article  Google Scholar 

  32. WANG Jun, MA Jian-jun, LIU Fei-yu. Experimental study on the improvement of marine clay slurry by electroosmosisvacuum preloading [J]. Geotextiles and Geomembranes, 2016, 44(4): 615–622. DOI: https://doi.org/10.1016/j.geotexmem.2016.03.004.

    Article  Google Scholar 

  33. PENG Jie, XIONG Xiong, MAHFOUZ A H, SONG En-run. Vacuum preloading combined electroosmotic strengthening of ultra-soft soil [J]. Journal of Central South University, 2013, 20(11): 3282–3295. DOI: https://doi.org/10.1007/s11771-013-1852-9.

    Article  Google Scholar 

  34. WANG Jun, ZHAO Ran, CAI Yuan-qiang. Vacuum preloading and electro-osmosis consolidation of dredged slurry pre-treated with flocculants [J]. Engineering Geology, 2018, 246: 123–130. DOI: https://doi.org/10.1016/j.enggeo.2018.09.024.

    Article  Google Scholar 

  35. FU Hong-tao, CAI Yuan-qiang, WANG Jun. Experimental study on the combined application of vacuum preloading-variable-spacing electro-osmosis to soft ground improvement [J]. Geosynthetics International, 2017, 24(1): 72–81. DOI: https://doi.org/10.1680/jgein.16.00016.

    Article  Google Scholar 

  36. QIU Chen-chen, SHEN Yang, LI Yan-de. Laboratory tests on soft clay using electro-osmosis in combination with vacuum preloading [J]. Chinese Journal of Geotechnical Engineering, 2017, 39: 251–255. DOI: https://doi.org/10.11779/CJGE2017S1050. (in Chinese)

    Google Scholar 

  37. SUN Zhao-hua, GAO Ming-jun, YU Xiang-juan. Vacuum preloading combined with electro-osmotic dewatering of dredger fill using electric vertical drains [J]. Drying Technology, 2015, 33(7): 847–853. DOI: https://doi.org/10.1080/07373937.2014.992529.

    Article  Google Scholar 

  38. ESRIG M I. Pore pressure, consolidation and electro-kinetics [J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1968, 94: 899–922. DOI: https://doi.org/10.1061/JSFEAQ.0001178.

    Article  Google Scholar 

  39. XU Wei, LIU Si-hong, WANG Liu-jiang, WANG Jun-bo. Analytical theory of soft ground consolidation under vacuum preloading combined with electro-osmosis [J]. Journal of Hohai University (Natural Sciences), 2011, 39(2): 169–175. DOI: https://doi.org/10.3876/j.issn.1000-1980.2011.02.010. (in Chinese)

    Google Scholar 

  40. WU Hui, HU Li-ming. Analytical models of the coupling of vacuum preloading and electro-osmosis consolidation for ground stabilization [J]. Journal of Tsinghua University (Science and Technology), 2012, 52(2): 182–185. (in Chinese)

    Google Scholar 

  41. WANG Liu-jiang, WANG Yao-ming, LIU Si-hong, YUAN Jing. 2D analytical solution of consolidation for vacuum preloading combined with electro-osmosis drainage considering reduction of effective voltage [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3134–3141. DOI: https://doi.org/10.13722/j.cnki.jrme.2018.0025. (in Chinese)

    Google Scholar 

  42. SHEN Yang, FENG Jian-ting, QIU Chen-chen. Two-dimensional consolidation theory of vacuum preloading combined with electroosmosis considering the distribution of soil voltage [J]. Soil Mechanics Foundation Engineering, 2020, 57(1): 25–34. DOI: https://doi.org/10.1007/s11204-020-09633-8.

    Article  Google Scholar 

  43. SHEN Yang, QIU Chen-chen, LI Yan-de. An analytical solution for two-dimensional vacuum preloading combined with electro-osmosis consolidation using EKG electrodes [J]. Plos One, 2017, 12(8): 1–15. DOI: https://doi.org/10.1371/journal.pone.0180974.

    Article  Google Scholar 

  44. SHEN Yang, FENG Jian-ting, SHI Wen. Effects of voltage gradients on electro-osmotic characteristics of Taizhou soft clay [J]. International Journal of Electrochemical Science, 2019, 14(3): 2136–2159. DOI: https://doi.org/10.20964/2019.03.06.

    Google Scholar 

  45. POTHIRAKSANON C, SAOWAPAKPIBOON J, BERGADO D T, THAN N Y. Reduction of smear effects around PVD using thermo-PVD [J]. Proceedings of the Institution of Civil Engineers Ground Improvement, 2008, 161(4): 179–187. DOI: https://doi.org/10.1680/grim.2008.161.4.179.

    Article  Google Scholar 

  46. ABUEL-NAGA H M, BERGADO D T, CHAIPRAKAIKEOW S. Innovative thermal technique for enhancing the performance of prefabricated vertical drain during the preloading process [J]. Geotextiles & Geomembranes, 2006, 24(6): 359–370. DOI: https://doi.org/10.1016/j.geotexmem.2006.04.003.

    Article  Google Scholar 

  47. SUN Zhao-hua, WU Chang-jiang, BAO Hua. Coupling consolidation theory of vacuum preloading incorporated with electro-osmosis for electric vertical drains [J]. Science Technology and Engineering, 2018, 18(33): 197–202. DOI: https://doi.org/10.3969/j.issn.1671-1815.2018.33.031. (in Chinese)

    Google Scholar 

  48. CAO Yong-hua, GAO Zhi-yi, LIU Ai-min. Characteristics and development of electro-osmotic treatment for ground improvement [J]. Port & Waterway Engineering, 2008, 4: 92–96. DOI: https://doi.org/10.16233/j.cnki.issn1002-4972.2008.04.024. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FENG Jian-ting provided the concept and edited the draft of manuscript. SHEN Yang carried out data processing, performed data analysis, and contributed to the paper writing. XU Jun-hong author contributed a lot in the related work of modification and beautification of the figures, as well as polishing of the language. SHI Wen conducted the literature review.

Corresponding author

Correspondence to Yang Shen  (沈扬).

Additional information

Conflict of interest

FENG Jian-ting, SHEN Yang, XU Jun-hong and SHI Wen declare that they have no conflict of interest.

Foundation item: Project(51979087) supported by the National Natural Science Foundation of China; Project(BK20180776) supported by the Jiangsu Natural Science Foundation, China; Project(202006710002) supported by the China Scholarship Council

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Jt., Shen, Y., Xu, Jh. et al. Analytical solution of vacuum preloading technology combined with electroosmosis coupling considering impacts of distribution of soil’s electrical potential. J. Cent. South Univ. 28, 2544–2555 (2021). https://doi.org/10.1007/s11771-021-4785-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4785-8

Key words

关键词

Navigation