Skip to main content
Log in

Microwave hydrothermal synthesis, characterization and excellent uranium adsorption properties of CoFe2O4@rGO nanocomposite

CoFe2O4@rGO 纳米复合材料的微波水热合成、表征及其吸附性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To improve the adsorption performance and simplify uranium separation from aqueous media in post-treatment processes, a magnetic CoFe2O4@rGO composite was synthesized by microwave-hydrothermal method. The results of XRD, Raman, TEM/HRTEM, FTIR, BET and VSM characterization show that spinel-type cobalt ferrite CoFe2O4 nanoparticles ca. 13.4 nm in size are dispersedly anchored on the graphene sheet, and the saturation magnetization of the nanocomposite is 46.7 mA/(m2·g). The effects of different pH, initial concentration and other conditions on uranium adsorption capacity were investigated, and adsorption kinetics equations were fitted to determine the adsorption behaviour of uranium on CoFe2O4@rGO in simulated uranium-containing seawater. It was observed that the uranium adsorption capacity of CoFe2O4@rGO composite at pH=5 is 127.6 mg/g, which is 1.31 and 2.43 times that of rGO and pure CoFe2O4. The adsorption process conforms to Langmuir and quasi-second-order kinetic model. The excellent adsorption performance of CoFe2O4@rGO makes it potentially useful in the treatment of uranium-polluted water.

摘要

通过微波水热法合成磁性CoFe2O4@rGO 纳米复合材料。XRD、Raman、TEM/HRTEM、FTIR、 BET 和VSM 表征结果表明,尺寸约为13 nm 的尖晶石型CoFe2O4 纳米粒子分散锚定在石墨烯片上, 其饱和磁化强度为46.7 mA/(m2·g),满足磁分离要求。研究了不同pH 值、初始浓度等条件对 CoFe2O4@rGO 铀吸附容量的影响,确定了铀在水中的吸附行为并拟合了吸附动力学方程。结果表明 在pH=5 时,CoFe2O4@rGO 纳米复合材料吸附铀的能力为127.6 mg/g,分别是rGO 和纯CoFe2O4 的 1.31 和2.43 倍。吸附过程符合Langmuir 和准二级动力学模型。CoFe2O4@rGO 纳米复合材料优良的吸 附性能使其在处理铀污染水方面具有潜在的用途。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YANG Ai-li, YANG Peng, HUANG C P. Effect of Mg(II) on the removal of uranium from low radioactive wastewater by flocculation using polyacrylamide [J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21(4): 04017006. DOI: https://doi.org/10.1061/(asce)hz.2153-5515.0000359.

    Article  Google Scholar 

  2. ZHANG C, DODGE C J, MALHOTRA S V, FRANCIS A J. Bioreduction and precipitation of uranium in ionic liquid aqueous solution by Clostridium sp [J]. Bioresource Technology, 2013, 136: 752–756. DOI: https://doi.org/10.1016/j.biortech.2013.03.085.

    Article  Google Scholar 

  3. SHEN Jun-jie, SCHÄFER A. Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review [J]. Chemosphere, 2014, 117: 679–691. DOI: https://doi.org/10.1016/j.chemosphere.2014.09.090.

    Article  Google Scholar 

  4. SREENIVAS T, RAJAN K C. Studies on the separation of dissolved uranium from alkaline carbonate leach slurries by resin-in-pulp process [J]. Separation and Purification Technology, 2013, 112: 54–60. DOI: https://doi.org/10.1016/j.seppur.2013.03.050.

    Article  Google Scholar 

  5. LINGAMDINNE L P, CHOI Y L, KIM I S, YANG J K, KODURU J R, CHANG Y Y. Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides [J]. Journal of Hazardous Materials, 2017, 326: 145–156. DOI: https://doi.org/10.1016/j.jhazmat.2016.12.035.

    Article  Google Scholar 

  6. LI J, WANG X, ZHAO G, CHEN C, CHAI Z, ALSAEDI A, HAYAT T, WANG X. Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions [J]. Chemical Society Reviews, 2018, 47(7): 2322–2356. DOI: https://doi.org/10.1039/c7cs00543a.

    Article  Google Scholar 

  7. TOBILKO V, SPASONOVA L, KOVALCHUK I, KORNILOVYCH B, KHOLODKO Y. Adsorption of uranium (VI) from aqueous solutions by amino-functionalized clay minerals [J]. Colloids and Interfaces, 2019, 3(1): 41. DOI: https://doi.org/10.3390/colloids3010041.

    Article  Google Scholar 

  8. ANIRUDHAN T S, JALAJAMONY S. Ethyl thiosemicarbazide intercalated organophilic calcined hydrotalcite as a potential sorbent for the removal of uranium(VI) and thorium(IV) ions from aqueous solutions [J]. Journal of Environmental Sciences, 2013, 25(4): 717–725. DOI: https://doi.org/10.1016/S1001-0742(12)60064-3.

    Article  Google Scholar 

  9. GU Peng-cheng, ZHANG Sai, LI Xing, WANG Xiang-xue, WEN Tao, JEHAN R, ALSAEDI A, HAYAT T, WANG Xiang-ke. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution [J]. Environmental Pollution, 2018, 240: 493–505. DOI: https://doi.org/10.1016/j.envpol.2018.04.136.

    Article  Google Scholar 

  10. CHOUYYOK W, WARNER C L, MACKIE K E, WARNER M G, GILL G A, ADDLEMAN R S. Nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater [J]. Industrial & Engineering Chemistry Research, 2016, 55(15): 4195–4207. DOI: https://doi.org/10.1021/acs.iecr.5b03650.

    Article  Google Scholar 

  11. WEN Zhen-qian, YAO Yi-xuan, NIU Yu-qing, ZHOU Genmao, XU Guo-long, ZHONG Hong. Adsorption mechanism of weakly basic anion exchange resin for uranium in acidic leaching solution containing uranium [J]. Journal of Central South University (Science and Technology), 2016, 47(6): 1867–1871. (in Chinese)

    Google Scholar 

  12. ALI I, BASHEER A A, MBIANDA X Y, BURAKOV A, GALUNIN E, BURAKOVA I, MKRTCHYAN E, TKACHEV A, GRACHEV V. Graphene based adsorbents for remediation of noxious pollutants from wastewater [J]. Environment International, 2019, 127: 160–180. DOI: https://doi.org/10.1016/j.envint.2019.03.029.

    Article  Google Scholar 

  13. WU Zhong-shuai, WANG Da-wei, REN Wen-cai, ZHAO Jinping, ZHOU Guang-min, LI Feng, CHENG Hui-ming. Anchoring hydrous RuO2 on graphene sheets for highperformance electrochemical capacitors [J]. Advanced Functional Materials, 2010, 20(20): 3595–3602. DOI: https://doi.org/10.1002/adfm.201001054.

    Article  Google Scholar 

  14. ZHAO Dong-lin, ZHU Hong-yu, WU Chang-nian, FENG Shao-jie, ALSAEDI A, HAYAT T, CHEN Chang-lun. Facile synthesis of magnetic Fe3O4/graphene composites for enhanced U(VI) sorption [J]. Applied Surface Science, 2018, 444: 691–698. DOI: https://doi.org/10.1016/j.apsusc.2018.03.121.

    Article  Google Scholar 

  15. BAI Song, SHEN Xiao-ping, ZHONG Xin, LIU Yang, ZHU Guo-xing, XU Xiang, CHEN Kang-min. One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal [J]. Carbon, 2012, 50(6): 2337–2346. DOI: https://doi.org/10.1016/j.carbon.2012.01.057.

    Article  Google Scholar 

  16. CHEN Teng, DU Ping, JIANG Wei, LIU Jie, HAO Ga-zi, GAO Han, XIAO Lei, KE Xiang, ZHAO Feng-qi. A facile one-pot solvothermal synthesis of CoFe2O4/RGO and its excellent catalytic activity on thermal decomposition of ammonium perchlorate [J]. RSC Advances, 2016, 6(87): 83838–83847. DOI: https://doi.org/10.1039/c6ra16448j.

    Article  Google Scholar 

  17. ZHANG Kun, LI Jun-jian, WU Fan, SUN Meng-xiao, XIA Yilu, XIE A-ming. Sandwich CoFe2O4/RGO/CoFe2O4 nanostructures for high-performance electromagnetic absorption [J]. ACS Applied Nano Materials, 2019, 2(1): 315–324. DOI: https://doi.org/10.1021/acsanm.8b01927.

    Article  Google Scholar 

  18. ZHU Yan-fang, LV X, ZHANG Li-li, GUO Xiao-dong, LIU Dai-jun, CHEN Jian-jun, JI Jun-yi. Liquid-solid-solution assembly of CoFe2O4/graphene nanocomposite as a highperformance lithium-ion battery anode [J]. Electrochimica Acta, 2016, 215: 247–252. DOI: https://doi.org/10.1016/j.electacta.2016.08.057.

    Article  Google Scholar 

  19. SHARMA N, OJHA H, BHARADWAJ A, PATHAK D P, SHARMA R K. Preparation and catalytic applications of nanomaterials: A review [J]. RSC Advances, 2015, 5(66): 53381–53403. DOI: https://doi.org/10.1039/C5RA06778B.

    Article  Google Scholar 

  20. CORRADI A B, BONDIOLI F, FOCHER B, FERRARI A M, GRIPPO C, MARIANI E, VILLA C. Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders [J]. Journal of the American Ceramic Society, 2005, 88(9): 2639–2641. DOI: https://doi.org/10.1111/j.1551-2916.2005.00474.x.

    Article  Google Scholar 

  21. MA Jun, LIU Chang-hua, LI Rui, WANG Jia. Properties and structural characterization of oxide starch/chitosan/graphene oxide biodegradable nanocomposites [J]. Journal of Applied Polymer Science, 2012, 123(5): 2933–2944. DOI: https://doi.org/10.1002/app.34901.

    Article  Google Scholar 

  22. WEN Xiao-feng, DU Chun-yan, ZENG Guang-ming, HUANG Dan-lian, ZHANG Jin-fan, YIN Ling-shi, TAN Shiyang, HUANG Lu, CHEN Hong. A novel biosorbent prepared by immobilized Bacillus licheniformis for lead removal from wastewater [J]. Chemosphere, 2018, 200: 173–179. DOI: https://doi.org/10.1016/j.chemosphere.2018.02.078.

    Article  Google Scholar 

  23. LIU Wen, ZHAO Xiao, WANG Ting, ZHAO Dong-ye, NI Jinren. Adsorption of U(VI) by multilayer titanate nanotubes: Effects of inorganic cations, carbonate and natural organic matter [J]. Chemical Engineering Journal, 2016, 286: 427–435. DOI: https://doi.org/10.1016/j.cej.2015.10.094.

    Article  Google Scholar 

  24. FATHY M, GOMAA A, TAHER F A, EL-FASS M M, KASHYOUT A E H B. Optimizing the preparation parameters of GO and rGO for large-scale production [J]. Journal of Materials Science, 2016, 51(12): 5664–5675. DOI: https://doi.org/10.1007/s10853-016-9869-8.

    Article  Google Scholar 

  25. GABAL M A, AL-JUAID A A, EL-RASHED S, HUSSEIN M A. Synthesis and characterization of nano-sized CoFe2O4 via facile methods: A comparative study [J]. Materials Research Bulletin, 2017, 89: 68–78. DOI: https://doi.org/10.1016/j.materresbull.2016.12.048.

    Article  Google Scholar 

  26. MERMOUX M, CHABRE Y, ROUSSEAU A. FTIR and 13C NMR study of graphite oxide [J]. Carbon, 1991, 29(3): 469–474. DOI: https://doi.org/10.1016/0008-6223(91)90216-6.

    Article  Google Scholar 

  27. CHEN Shui-ping, HONG Jian-xun, YANG Hong-xiao, YANG Ji-zhen. Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite [J]. Journal of Environmental Radioactivity, 2013, 126: 253–258. DOI: https://doi.org/10.1016/j.jenvrad.2013.09.002.

    Article  Google Scholar 

  28. SUN Yu-bing, DING Cong-cong, CHENG Wen-cai, WANG Xiang-ke. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron [J]. Journal of Hazardous Materials, 2014, 280: 399–408. DOI: https://doi.org/10.1016/j.jhazmat.2014.08.023.

    Article  Google Scholar 

  29. YIN Wen-zhu, HAO Shuo, CAO Hua-qiang. Solvothermal synthesis of magnetic CoFe2O4/rGO nanocomposites for highly efficient dye removal in wastewater [J]. RSC Advances, 2017, 7(7): 4062–4069. DOI: https://doi.org/10.1039/C6RA26948F.

    Article  Google Scholar 

  30. SUN Yu-bing, YANG Shi-tong, SHENG Guo-dong, GUO Zhi-qiang, WANG Xiang-ke. The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes [J]. Journal of Environmental Radioactivity, 2012, 105: 40–47. DOI: https://doi.org/10.1016/j.jenvrad.2011.10.009.

    Article  Google Scholar 

Download references

Funding

Project(19B126) supported by the Scientific Research Fund of Hunan Provincial Education Department, China; Project(21772035) supported by the National Natural Science Foundation of China; Projects(2018JJ3099, 2019JJ40058) supported by the Provincial Natural Science Foundation of Hunan, China; Project supported by the Innovation and Entrepreneurship Training Program of Hunan Institute of Engineering, China

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by WU Shui-sheng and YI Bing. LAN Dong-hui and ZHANG Xiao-wen carried out mechanical tests. HUANG Yi and DENG Xing-hong analyzed the data. WU Shui-sheng and AU Chak-tong wrote the paper. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Bing Yi  (易兵).

Additional information

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Ss., Lan, Dh., Zhang, Xw. et al. Microwave hydrothermal synthesis, characterization and excellent uranium adsorption properties of CoFe2O4@rGO nanocomposite. J. Cent. South Univ. 28, 1955–1965 (2021). https://doi.org/10.1007/s11771-021-4744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4744-4

Key words

关键词

Navigation