Skip to main content
Log in

Highlights of mainstream solar cell efficiencies in 2023

  • Highlights
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Shen W Z, Zhao Y X, Liu F. Highlights of mainstream solar cell efficiencies in 2021. Frontiers in Energy, 2022, 16(1): 1–8

    Article  Google Scholar 

  2. Shen W Z, Zhao Y X, Liu F. Highlights of mainstream solar cell efficiencies in 2022. Frontiers in Energy, 2023, 17(1): 9–15

    Article  Google Scholar 

  3. JinkoSolar Website. JinkoSolar sets new records for cell, module, and tandem efficiency successively. 2023-11-10

  4. LONGi Website. LONGi sets a new world record of 27.09% for the efficiency of silicon heterojunction back-contact (HBC) solar cells. 2023-12-19

  5. Schmidt J, Peibst R, Brendel R. Surface passivation of crystalline silicon solar cells: Present and future. Solar Energy Materials and Solar Cells, 2018, 187: 39–54

    Article  Google Scholar 

  6. Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE Journal of Photovoltaics, 2013, 3(4): 1184–1191

    Article  Google Scholar 

  7. Aberle A G, Glunz S W, Stephens A W, et al. High efficiency silicon solar cell: Si/SiO2 interface parameters and their impact on device performance. Progress in Photovoltaics: Research and Applications, 1994, 2(4): 265–273

    Article  Google Scholar 

  8. Fırat M, Sivaramakrishnan Radhakrishnan H, Singh S, et al. Industrial metallization of fired passivating contacts for n-type tunnel oxide passivated contact (n-TOPCon) solar cells. Solar Energy Materials and Solar Cells, 2022, 240: 111692

    Article  Google Scholar 

  9. Kruse C N, Wolf M, Schinke C, et al. Impact of contacting geometries when measuring fill factors of solar cell current-voltage characteristics. IEEE Journal of Photovoltaics, 2017, 7(3): 747–754

    Article  Google Scholar 

  10. Chen K J, Hartweg B, Woodhouse M, et al. Self-aligned selective area front contacts on poly-Si/SiOx passivating contact c-Si solar cells. IEEE Journal of Photovoltaics, 2022, 12(3): 678–689

    Article  Google Scholar 

  11. Ding D, Lu G L, Li Z P, et al. High-efficiency n-type silicon PERT bifacial solar cells with selective emitters and poly-Si based passivating contacts. Solar Energy, 2019, 193: 494–501

    Article  Google Scholar 

  12. Richter A, Benick J, Müller R, et al. Tunnel oxide passivating electron contacts as full-area rear emitter of high-efficiency p-type silicon solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26(8): 579–586

    Article  Google Scholar 

  13. Lin W, Chen D, Liu C, et al. Green-laser-doped selective emitters with separate BBr3 diffusion processes for high-efficiency n-type silicon solar cells. Solar Energy Materials and Solar Cells, 2020, 210: 110462

    Article  Google Scholar 

  14. Xiao M L, Yang Z H, Liu Z K, et al. SiOx/polysilicon selective emitter prepared by PECVD-deposited amorphous silicon plus one-step firing enabling excellent J0,met of < 235 fA/cm2 and ρc of < 2 mΩ·cm2. Solar Energy, 2023, 262: 111887

    Article  Google Scholar 

  15. Großer S, Krassowski E, Swatek S, et al. Microscale contact formation by laser enhanced contact optimization. IEEE Journal of Photovoltaics, 2022, 12(1): 26–29

    Article  Google Scholar 

  16. Fellmeth T, Höffler H, Mack S, et al. Laser-enhanced contact optimization on iTOPCon solar cells. Progress in Photovoltaics: Research and Applications, 2022, 30(12): 1393–1399

    Article  Google Scholar 

  17. Padhamnath P, Khanna A, Balaji N, et al. Progress in screen-printed metallization of industrial solar cells with SiOx/poly-Si passivating contacts. Solar Energy Materials and Solar Cells, 2020, 218: 110751

    Article  Google Scholar 

  18. Steinhauser B, Polzin J I, Feldmann F, et al. Excellent surface passivation quality on crystalline silicon using industrial-scale direct-plasma TOPCon deposition technology. Solar RRL, 2018, 2(7): 1800068

    Article  Google Scholar 

  19. Lin H, Yang M, Ru X, et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nature Energy, 2023, 8(8): 789–799

    Article  Google Scholar 

  20. Yu C, Gao K, Peng C W, et al. Industrial-scale deposition of nanocrystalline silicon oxide for 26.4%-efficient silicon heterojunction solar cells with copper electrodes. Nature Energy, 2023, 8(12): 1375–1385

    Article  Google Scholar 

  21. Yu J, Li J, Zhao Y, et al. Copper metallization of electrodes for silicon heterojunction solar cells: Process, reliability and challenges. Solar Energy Materials and Solar Cells, 2021, 224: 110993

    Article  Google Scholar 

  22. National Renewable Energy Laboratory (NREL). Best research—Cell efficiency chart. 2024, available at website of NREL

  23. Green M A, Dunlop E D, Siefer G, et al. Solar cell efficiency tables (version 61). Progress in Photovoltaics: Research and Applications, 2023, 31(1): 3–16

    Article  Google Scholar 

  24. Park J, Kim J, Yun H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 2023, 616(7958): 724–730

    Article  Google Scholar 

  25. Green M A, Dunlop E D, Yoshita M, et al. Solar cell efficiency tables (version 62). Progress in Photovoltaics: Research and Applications, 2023, 31(7): 651–663

    Article  Google Scholar 

  26. Zhao Y, Ma F, Qu Z, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377(6605): 531–534

    Article  Google Scholar 

  27. Green M A, Dunlop E D, Yoshita M, et al. Solar cell efficiency tables (version 63). Progress in Photovoltaics: Research and Applications, 2024, 32(1): 3–13

    Article  Google Scholar 

  28. Peng W, Mao K, Cai F, et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science, 2023, 379(6633): 683–690

    Article  Google Scholar 

  29. Liu C, Yang Y, Chen H, et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science, 2023, 382(6672): 810–815

    Article  Google Scholar 

  30. Zhang S, Ye F, Wang X, et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science, 2023, 380(6643): 404–409

    Article  Google Scholar 

  31. Li Z, Sun X, Zheng X, et al. Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science, 2023, 382(6668): 284–289

    Article  Google Scholar 

  32. Park S M, Wei M, Lempesis N, et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature, 2023, 624(7991): 289–294

    Article  Google Scholar 

  33. Yu S, Xiong Z, Zhou H, et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science, 2023, 382(6677): 1399–1404

    Article  Google Scholar 

  34. Aydin E, Ugur E, Yildirim B K, et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature, 2023, 623(7988): 732–738

    Article  Google Scholar 

  35. Li J, Liang H, Xiao C, et al. Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides. Nature Energy, 2024, early access, doi:https://doi.org/10.1038/s41560-023-01442-1

  36. Ding Y, Ding B, Kanda H, et al. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature Nanotechnology, 2022, 17(6): 598–605

    Article  Google Scholar 

  37. Li H, Zhang W. Perovskite tandem solar cells: From fundamentals to commercial deployment. Chemical Reviews, 2020, 120(18): 9835–9950

    Article  Google Scholar 

  38. Wu P, Thrithamarassery Gangadharan D, Saidaminov M I, et al. A roadmap for efficient and stable all-perovskite tandem solar cells from a chemistry perspective. ACS Central Science, 2023, 9(1): 14–26

    Article  Google Scholar 

  39. Lin R, Wang Y, Lu Q, et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature, 2023, 620(7976): 994–1000

    Article  Google Scholar 

  40. King Abdullah University of Science and Technology (KAUST). KAUST team sets world record for tandem solar cell efficiency. 2023–4-16, available at website of KAUST

  41. Emiliano B. KAUST claims 33.7% efficiency for perovskite/silicon tandem solar cell. 2023-5-30, available at website of PV-Magazine

  42. LONGi Website. LONGi sets a new world record of 33.9% for the efficiency of crystalline silicon-perovskite tandem solar cells. 2023–11-3

  43. De Wolf S, Aydin E. Tandems have the power. Science, 2023, 381(6653): 30–31

    Article  Google Scholar 

  44. Aydin E, Allen T G, De Bastiani M, et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science, 2024, 383(6679): eadh3849

    Article  Google Scholar 

  45. Yamamoto K, Mishima R, Uzu H, et al. High efficiency perovskite/heterojunction crystalline silicon tandem solar cells: Towards industrial-sized cell and module. Japanese Journal of Applied Physics, 2023, 62(SK): SK1021

    Article  Google Scholar 

  46. Oxford PV Website. Oxford PV sets new solar cell world record. 2023-5-24

  47. Chen T, Li S, Li Y, et al. Compromising charge generation and recombination of organic photovoltaics with mixed diluent strategy for certified 19.4% efficiency. Advanced Materials, 2023, 35(21): 2300400

    Article  Google Scholar 

  48. Bi P, Wang J, Cui Y, et al. Enhancing photon utilization efficiency for high - performance organic photovoltaic cells via regulating phase - transition kinetics. Advanced Materials, 2023, 35(16): 2210865

    Article  Google Scholar 

  49. Zhu L, Zhang M, Xu J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 2022, 21(6): 656–663

    Article  Google Scholar 

  50. Chen X K, Qian D, Wang Y, et al. A unified description of non-radiative voltage losses in organic solar cells. Nature Energy, 2021, 6(8): 799–806

    Article  Google Scholar 

  51. Li C, Zhou J, Song J, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6(6): 605–613

    Article  Google Scholar 

  52. Zeng R, Zhu L, Zhang M, et al. All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle. Nature Communications, 2023, 14(1): 4148

    Article  Google Scholar 

  53. National Renewable Energy Laboratory (NREL). Champion photovoltaic module efficiency chart. 2024

  54. Valerie T. German researchers claim record-breaking 14.46% efficiency for organic PV module. 2023-12-19, available at website of PV-Magazine

  55. Liang Y, Zhang D, Wu Z, et al. Organic solar cells using oligomer acceptors for improved stability and efficiency. Nature Energy, 2022, 7(12): 1180–1190

    Article  Google Scholar 

  56. IEC 61215-2:2021. Terrestrial photovoltaic (PV) modules — design qualification and type approval: Part 2: Test procedures. 2021–2-24, available at website of IEC

Download references

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (Grant No. 2022YFB4200101), the Inner Mongolia Science and Technology Project, China (No. 2022JBGS0036) and the National Natural Science Foundation of China (Grant Nos. 52325306, 11834011, 11974242, and 22025505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhong Shen, Yixin Zhao or Feng Liu.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Zhao, Y. & Liu, F. Highlights of mainstream solar cell efficiencies in 2023. Front. Energy 18, 8–15 (2024). https://doi.org/10.1007/s11708-024-0937-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-024-0937-5

Navigation