Skip to main content
Log in

Highlights of mainstream solar cell efficiencies in 2022

  • Highlights
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Shen W Z, Zhao Y X, Liu F. Highlights of mainstream solar cell efficiencies in 2021. Frontiers in Energy, 2022, 16(1): 1–8

    Article  Google Scholar 

  2. Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2017, 2(5): 17032

    Article  Google Scholar 

  3. Shen W Z, Li Z P. Physics and Devices of Silicon Heterojunction Solar Cells. Beijing: Scientific Press, 2014

    Google Scholar 

  4. Yang M, Ru X N, Yin S et al. Progress of high-efficient silicon heterojunction solar cells. In: 18th China SoG Silicon and PV Power Conference, Taiyuan, China, 2022

  5. Green M A, Blakers A W. Advantages of metal-insulator-semiconductor structures for silicon solar cells. Solar Cells, 1983, 8(1): 3–16

    Article  Google Scholar 

  6. Feldmann F, Bivour M, Reichel C, et al. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Solar Energy Materials and Solar Cells, 2014, 120: 270–274

    Article  Google Scholar 

  7. Feldmann F, Nogay G, Löper P, et al. Charge carrier transport mechanisms of passivating contacts studied by temperature-dependent J-V measurements. Solar Energy Materials and Solar Cells, 2018, 178: 15–19

    Article  Google Scholar 

  8. Richter A, Benick J, Feldmann F, et al. n-type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation. Solar Energy Materials and Solar Cells, 2017, 173: 96–105

    Article  Google Scholar 

  9. Richter A, Müller R, Benick J, et al. Design rules for high-efficiency both-sides contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nature Energy, 2021, 6(4): 429–438

    Article  Google Scholar 

  10. Chen D M, Chen Y F, Wang Z G, et al. 24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design. Solar Energy Materials and Solar Cells, 2020, 206: 110258

    Article  Google Scholar 

  11. National Renewable Energy Laboratory. Best research-cell efficiency chart. 2022, available at website of NREL

  12. Green M A, Dunlop E D, Siefer G, et al. Solar cell efficiency tables (Version 61). Progress in Photovoltaics: Research and Applications, 2023, 31(1): 3–16

    Article  Google Scholar 

  13. National Renewable Energy Laboratory. Best research-cell efficiencies: emerging photovoltaics. 2022, available at website of NREL

  14. Green M A, Dunlop E D, Hohl-Ebinger J, et al. Solar cell efficiency tables (version 60). Progress in Photovoltaics: Research and Applications, 2022, 30(7): 687–701

    Article  Google Scholar 

  15. Ding B, Zhang Y, Ding Y, et al. Development of efficient and stable perovskite solar cells and modules. In: The 5th International Conference on Materials & Environmental Science, ICMES-2022, Saïdia

  16. Ding Y, Ding B, Kanda H, et al. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature Nanotechnology, 2022, 17(6): 598–605

    Article  Google Scholar 

  17. Xiao K, Lin Y H, Zhang M, et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science, 2022, 376(6594): 762–767

    Article  Google Scholar 

  18. Taiyangnews. Renshine solar announces 29.0% efficiency for all-perovskite tandem solar cell. 2023-1-5, available at website of perovskite-info

  19. Helmholtz-Zentrum Berlin. World record back at HZB: Tandem solar cell achieves 32.5 percent efficiency. 2022-12-19, available at website of helmholtz-berlin

  20. Bellini E. CSEM, EPFL achieve 31.25% efficiency for tandem perovskite-silicon solar cell. 2022-7-7, available at website of pv-magazine

  21. Chen W, Zhu Y, Xiu J, et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nature Energy, 2022, 7(3): 229–237

    Article  Google Scholar 

  22. Jošt M, Köhnen E, Al-Ashouri A, et al. Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Letters, 2022, 7(4): 1298–1307

    Article  Google Scholar 

  23. EMILIANO BELLINI. HZB scientists announce 24.16% efficiency for tandem CIGS solar cell. 2020-4-16, available at website of pv-magazine

  24. Al-Ashouri A, Köhnen E, Li B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370(6522): 1300–1309

    Article  Google Scholar 

  25. Polman A, Knight M, Garnett E C, et al. Photovoltaic materials: present efficiencies and future challenges. Science, 2016, 352(6283): aad4424

    Article  Google Scholar 

  26. Zhu L, Zhang M, Xu J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 2022, 21(6): 656–663

    Article  Google Scholar 

  27. Song J, Zhang M, Hao T, et al. Design rules of the mixing phase and impacts on device performance in high-efficiency organic photovoltaics. Research, 2022, 9817267

  28. Li C, Zhou J, Song J, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6(6): 605–613

    Article  Google Scholar 

  29. He C, Pan Y, Lu G, et al. Versatile sequential casting processing for highly efficient and stable binary organic photovoltaics. Advanced Materials, 2022, 34(33): 2203379

    Article  Google Scholar 

  30. Wei Y, Chen Z, Lu G, et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Advanced Materials, 2022, 34(33): 2204718

    Article  Google Scholar 

  31. Zhan L, Li S, Li Y, et al. Manipulating charge transfer and transport via intermediary electron acceptor channels enables 19.3% efficiency organic photovoltaics. Advanced Energy Materials, 2022, 12: 2201076

    Article  Google Scholar 

  32. Zhang M, Zhu L, Zhou G, et al. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nature Communications, 2021, 12(1): 309

    Article  Google Scholar 

  33. Zhan L, Yin S, Li Y, et al. Multiphase Morphology with enhanced carrier lifetime via quaternary strategy enables high-efficiency, thick-film, and large-area organic photovoltaics. Advanced Materials, 2022, 34(45): 2206269

    Article  Google Scholar 

  34. Wang J, Cui Y, Xu Y, et al. A new polymer donor enables binary all — polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness. Advanced Materials, 2022, 34(35): 2205009

    Article  Google Scholar 

  35. Ma L, Cui Y, Zhang J, et al. High-efficiency and mechanically robust all-polymer organic photovoltaic cells enabled by optimized fibril network morphology. Advanced Materials, 2023, in press online, https://doi.org/10.1002/adma.202208926

  36. Sun R, Wang T, Fan Q, et al. 18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor. Joule, 2023, 7(1): 221–237

    Article  Google Scholar 

  37. Jiang Y, Dong X, Sun L, et al. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nature Energy, 2022, 7(4): 352–359

    Article  Google Scholar 

  38. Fan J, Liu Z X, Rao J, et al. High-performance organic solar modules via bilayer-merged-annealing assisted blade coating. Advanced Materials, 2022, 34(28): 2110569

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (Grant No. 2020YFB1505502) and the National Natural Science Foundations of China (Grant Nos. 11834011, 11974242, 22025505, 51973110, and 21734009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhong Shen, Yixin Zhao or Feng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Zhao, Y. & Liu, F. Highlights of mainstream solar cell efficiencies in 2022. Front. Energy 17, 9–15 (2023). https://doi.org/10.1007/s11708-023-0871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-023-0871-y

Navigation