Skip to main content

Advertisement

Log in

Polymeric nanocomposites for electrocaloric refrigeration

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Electrocaloric refrigeration represents an alternative solid-state cooling technology that has the potential to reach the ultimate goal of achieving zero-global-warming potential, highly efficient refrigeration, and heat pumps. To date, both polymeric and inorganic oxides have demonstrated giant electrocaloric effect as well as respective cooling devices. Although both polymeric and inorganic oxides have been identified as promising cooling methods that are distinguishable from the traditional ones, they still pose many challenges to more practical applications. From an electrocaloric material point of view, electrocaloric nanocomposites may provide a solution to combine the beneficial effects of both organic and inorganic electrocaloric materials. This article reviews the recent advancements in polymer-based electrocaloric composites and the state-of-the-art cooling devices operating these nanocomposites. From a device point of view, it discusses the existing challenges and potential opportunities of electrocaloric nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma R, Zhang Z, Tong K, et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science, 2017, 357(6356): 1130–1134

    Article  Google Scholar 

  2. Shi J, Han D, Li Z, et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3(5): 1200–1225

    Article  Google Scholar 

  3. Qian X, Han D, Zheng L, et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature, 2021, 600(7890): 664–669

    Article  Google Scholar 

  4. Gu H, Qian X, Li X, et al. A chip scale electrocaloric effect based cooling device. Applied Physics Letters, 2013, 102(12): 122904

    Article  Google Scholar 

  5. Neese B, Chu B, Lu S G, et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321(5890): 821–823

    Article  Google Scholar 

  6. Cui H, He W, Pei Q, et al. Electrocaloric effects in ferroelectric polymers. In: Asadi K, ed. Organic Ferroelectric Materials and Applications.Woodhead Publishing, 2022: 535–570

  7. Qian X, Wu S, Furman E, et al. Ferroelectric polymers as multifunctional electroactive materials: recent advances, potential, and challenges. MRS Communications, 2015, 5(2): 115–129

    Article  Google Scholar 

  8. Liu Y, Zhang B, Xu W, et al. Chirality-induced relaxor properties in ferroelectric polymers. Nature Materials, 2020, 19(11): 1169–1174

    Article  Google Scholar 

  9. Lu S G, Rožić B, Zhang Q M, et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Applied Physics Letters, 2010, 97(16): 162904

    Article  Google Scholar 

  10. Qiu J H, Ding J N, Yuan N Y, et al. Effect of misfit strain on the electrocaloric effect of P(VDF−TrFE) copolymer thin films. European Physical Journal B, 2011, 84(1): 25–28

    Article  Google Scholar 

  11. Li X, Qian X, Gu H, et al. Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Applied Physics Letters, 2012, 101(13): 132903

    Article  Google Scholar 

  12. Chen X, Li X, Qian X, et al. A polymer blend approach to tailor the ferroelectric responses in P(VDF−TrFE) based copolymers. Polymer, 2013, 54(9): 2373–2381

    Article  Google Scholar 

  13. Moreira R L. Electrocaloric effect in γ-irradiated P(VDF−TrFE) copolymers with relaxor features. Ferroelectrics, 2013, 446(1): 1–8

    Article  Google Scholar 

  14. Qian X, Ye H, Yang T, et al. Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect. Advanced Functional Materials, 2015, 25(32): 5134–5139

    Article  Google Scholar 

  15. Qian X, Yang T, Zhang T, et al. Anomalous negative electrocaloric effect in a relaxor/normal ferroelectric polymer blend with controlled nano- and meso-dipolar couplings. Applied Physics Letters, 2016, 108(14): 142902

    Article  Google Scholar 

  16. Prest W M Jr, Luca D J. The formation of the γ phase from the α and β polymorphs of polyvinylidene fluoride. Journal of Applied Physics, 1978, 49(10): 5042–5047

    Article  Google Scholar 

  17. Huang C, Klein R, Feng X, et al. Poly(vinylidene fluoride-trifluoroethylene) based high performance electroactive polymers. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(2): 299–311

    Article  Google Scholar 

  18. Saranya D, Chaudhuri A R, Parui J, et al. Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary. Bulletin of Materials Science, 2009, 32(3): 259–262

    Article  Google Scholar 

  19. Bai Y, Zheng G P, Ding K, et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film. Journal of Applied Physics, 2011, 110(9): 094103

    Article  Google Scholar 

  20. Peng B, Fan H, Zhang Q. A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Advanced Functional Materials, 2013, 23(23): 2987–2992

    Article  Google Scholar 

  21. Ye H, Qian X, Jeong D, et al. Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film. Applied Physics Letters, 2014, 105(15): 152908

    Article  Google Scholar 

  22. Ye H J, Qian X S, Lu J, et al. Dielectric and electrocaloric responses of Ba(Zr0.2Ti0.8)O3 bulk ceramics and thick films with sintering aids. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(3): 1501–1505

    Article  Google Scholar 

  23. Hou Y, Yang L, Qian X et al. Electrocaloric response near room temperature in Zr- and Sn-doped BaTiO3 systems. Philosophical Transactions of the Royal Society A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2074): 20160055

    Article  Google Scholar 

  24. Hou Y, Yang L, Qian X, et al. Enhanced electrocaloric effect in composition gradient bilayer thick films. Applied Physics Letters, 2016, 108(13): 133501

    Article  Google Scholar 

  25. Qian J, Guo M, Jiang J, et al. Enhanced electrocaloric strength of P(VDF−TrFE−CFE) induced by edge-on lamellae. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(11): 3212–3217

    Article  Google Scholar 

  26. Qian J, Jiang J, Shen Y. Enhanced electrocaloric strength in P(VDF−TrFE−CFE) by decreasing the crystalline size. Journal of Materiomics, 2019, 5(3): 357–362

    Article  Google Scholar 

  27. Li X, Qian X, Lu S G, et al. Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Applied Physics Letters, 2011, 99(5): 052907

    Article  Google Scholar 

  28. Li Q, Zhang G, Zhang X, et al. Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Advanced Materials, 2015, 27(13): 2236–2241

    Article  Google Scholar 

  29. Zhang G, Li Q, Gu H, et al. Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Advanced Materials, 2015, 27(8): 1450–1454

    Article  Google Scholar 

  30. Zhang G, Fan B, Zhao P, et al. Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency. ACS Applied Energy Materials, 2018, 1(3): 1344–1354

    Article  Google Scholar 

  31. Zhang G, Zhang X, Yang T, et al. Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured barium strontium titanates. ACS Nano, 2015, 9(7): 7164–7174

    Article  Google Scholar 

  32. Zhang G, Weng L, Hu Z, et al. Nanoconfinement-induced giant electrocaloric effect in ferroelectric polymer nanowire array integrated with aluminum oxide membrane to exhibit record cooling power density. Advanced Materials, 2019, 31(8): 1806642

    Article  Google Scholar 

  33. Jiang Z Y, Zheng X C, Zheng G P. The enhanced electrocaloric effect in P(VDF−TrFE) copolymer with barium strontium titanate nano-fillers synthesized via an effective hydrothermal method. RSC Advances, 2015, 5(76): 61946–61954

    Article  Google Scholar 

  34. Yang L, Qian X, Koo C, et al. Graphene enabled percolative nanocomposites with large electrocaloric efficient under low electric fields over a broad temperature range. Nano Energy, 2016, 22: 461–467

    Article  Google Scholar 

  35. Qian J, Peng R, Shen Z, et al. Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: in situ characterization and phase-field simulation. Advanced Materials, 2019, 31(5): e1801949

    Google Scholar 

  36. Lu Y, Yu J, Huang J, et al. Enhanced electrocaloric effect for refrigeration in lead-free polymer composite films with an optimal filler loading. Applied Physics Letters, 2019, 114(23): 233901

    Article  Google Scholar 

  37. Chen Y, Qian J, Yu J, et al. An all-scale hierarchical architecture induces colossal room-temperature electrocaloric effect at ultralow electric field in polymer nanocomposites. Advanced Materials, 2020, 32(30): 1907927

    Article  Google Scholar 

  38. Zhang G, Zhang X, Huang H, et al. Toward wearable cooling devices: highly flexible electrocaloric Ba0.67Sr0.33TiO3 nanowire Arrays. Advanced Materials, 2016, 28(24): 4811–4816

    Article  Google Scholar 

  39. Chen X, Qian X, Li X, et al. Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-based terpolymer/copolymer blends. Applied Physics Letters, 2012, 100(22): 222902

    Article  Google Scholar 

  40. Le Goupil F, Coin F, Pouriamanesh N, et al. Electrocaloric enhancement induced by cocrystallization of vinylidene difluoride-based polymer blends. ACS Macro Letters, 2021, 10(12): 1555–1562

    Article  Google Scholar 

  41. Ullah A, ur Rahman A, Won Ahn C, et al. Enhancement of dielectric and energy density properties in the PVDF-based copolymer/terpolymer blends. Polymer Engineering and Science, 2015, 55(6): 1396–1402

    Article  Google Scholar 

  42. Aziguli H, Liu Y, Zhang G, et al. Tuning the electrocaloric reversibility in ferroelectric copolymers by a blend approach. Europhysics Letters, 2019, 125(5): 57001 (1–6)

    Article  Google Scholar 

  43. Zhang X, Shen Y, Shen Z, et al. Achieving high energy density in PVDF-based polymer blends: suppression of early polarization saturation and enhancement of breakdown strength. ACS Applied Materials & Interfaces, 2016, 8(40): 27236–27242

    Article  Google Scholar 

  44. Lu S, Zhang Q. Large electrocaloric effect in relaxor ferroelectrics. Journal of Advanced Dielectrics, 2012, 2(3): 1230011

    Article  Google Scholar 

  45. Chen X, Li X, Qian X, et al. A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer. Polymer, 2013, 54(20): 5299–5302

    Article  Google Scholar 

  46. Chen J, Xiong X, Zhang Q, et al. P(VDF−TrFE)/PMMA blended films with enhanced electrowetting responses and superior energy storage performance. Polymers, 2019, 11(3): 526(1–13)

    Article  Google Scholar 

  47. Jung H, Kim J, Lim J, et al. Energy storage properties of blended polymer films with normal ferroelectric P(VDF−HFP) and relaxor ferroelectric P(VDF−TrFE−CFE). Electronic Materials Letters, 2020, 16(1): 47–54

    Article  Google Scholar 

  48. Shaobo L, Yanqiu L. Research on the electrocaloric effect of PMN/PT solid solution for ferroelectrics MEMS microcooler. Materials Science and Engineering B, 2004, 113(1): 46–49

    Article  Google Scholar 

  49. Kaddoussi H, Gagou Y, Lahmar A, et al. Ferroelectric phase changes and electrocaloric effects in Ba(Zr0.1Ti0.9)1−xSnxO3 ceramics solid solution. Journal of Materials Science, 2016, 51(7): 3454–3462

    Article  Google Scholar 

  50. Chen X, Qian X, Li X, et al. Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-based composites. MRS Online Proceedings Library, 2012, 1490: 86–91

    Google Scholar 

  51. Tokkan M, Demir M M, Adem U. Enhanced electrocaloric effect of P(VDF−TrFE)-based nanocomposites with Ca and Sn co-doped BaTiO3 particles. Materials Science, 2022, doi: https://doi.org/10.2139/ssrn.4091479

  52. De Cicco G, Morten B, Dalmonego D, et al. Pyroelectricity of PZT-based thick-films. Sensors and Actuators. A, Physical, 1999, 76(1–3): 409–415

    Article  Google Scholar 

  53. Valant M. Electrocaloric materials for future solid-state refrigeration technologies. Progress in Materials Science, 2012, 57(6): 980–1009

    Article  Google Scholar 

  54. Qian X, Ye H, Zhang Y, et al. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Advanced Functional Materials, 2014, 24(9): 1300–1305

    Article  Google Scholar 

  55. Axelsson A, Le Goupil F, Valant M, et al. Electrocaloric effect in lead-free Aurivillius relaxor ferroelectric ceramics. Acta Materialia, 2017, 124: 120–126

    Article  Google Scholar 

  56. Kang X, Jia S, Peng J, et al. Electromagnetic-driven electrocaloric cooling device based on ternary ferroelectric composites. Composites. Part B, Engineering, 2021, 227: 109391

    Article  Google Scholar 

  57. Wang H, Meng Y, Zhang Z, et al. Self-actuating electrocaloric cooling fibers. Advanced Energy Materials, 2020, 10(12): 1903902

    Article  Google Scholar 

  58. Dang Z, Yuan J, Zha J, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Progress in Materials Science, 2012, 57(4): 660–723

    Article  Google Scholar 

  59. Wang J, Wu C, Liu R, et al. P(VDF−TrFE−CFE)-based percolative composites exhibiting significantly enhanced dielectric properties. Polymer Bulletin, 2013, 70(4): 1327–1335

    Article  Google Scholar 

  60. Tu S, Jiang Q, Zhang X, et al. Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano, 2018, 12(4): 3369–3377

    Article  Google Scholar 

  61. Tu S, Jiang Q, Zhang J, et al. Enhancement of dielectric permittivity of Ti3C2Tx MXene/polymer composites by controlling flake size and surface termination. ACS Applied Materials & Interfaces, 2019, 11(30): 27358–27362

    Article  Google Scholar 

  62. Jana S, Garain S, Sen S, et al. The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films. Physical Chemistry Chemical Physics, 2015, 17(26): 17429–17436

    Article  Google Scholar 

  63. Wu X, Kang D, Liu N, et al. Microstructure manipulation in PVDF/SMA/MWCNTs ultrafiltration membranes: effects of hydrogen bonding and crystallization during the membrane formation. Separation and Purification Technology, 2021, 278: 119523

    Article  Google Scholar 

  64. Li J, Seok S I, Chu B, et al. Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Advanced Materials, 2009, 21(2): 217–221

    Article  Google Scholar 

  65. Shen Z H, Wang J J, Lin Y, et al. High-throughput phase-field design of high-energy-density polymer nanocomposites. Advanced Materials, 2018, 30(2): 1704380

    Article  Google Scholar 

  66. Dang Z M, Wang L, Yin Y, et al. Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Advanced Materials, 2007, 19(6): 852–857

    Article  Google Scholar 

  67. Nan C. Physics of inhomogeneous inorganic materials. Progress in Materials Science, 1993, 37(1): 66–68

    Article  Google Scholar 

  68. Dan Z, Jiang J, Zhang X, et al. Interfacial effects of BaTiO3@TiO2 nanofibers on dielectric relaxation processes of P(VDF−TrFE−CFE) nanocomposites. Ceramics International, 2020, 46(1): 1119–1123

    Article  Google Scholar 

  69. Zhang Y, Zhang C, Feng Y, et al. Energy storage enhancement of P(VDF−TrFE−CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy, 2019, 66: 104195(1–13)

    Article  Google Scholar 

  70. Morozovska A N, Eliseev E A, Glinchuk M D, et al. Analytical description of the size effect on pyroelectric and electrocaloric properties of ferroelectric nanoparticles. Physical Review Materials, 2019, 3(10): 104414

    Article  Google Scholar 

  71. Prateek, Thakur V K, Gupta R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical Reviews, 2016, 116(7): 4260–4317

    Article  Google Scholar 

  72. Tanaka T, Montanari G C, Mulhaupt R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 763–784

    Article  Google Scholar 

  73. Tanaka T. Dielectric nanocomposites with insulating properties. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5): 914–928

    Article  Google Scholar 

  74. Lewis T J. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 739–753

    Article  Google Scholar 

  75. Gu H, Craven B, Qian X, et al. Simulation of chip-size electrocaloric refrigerator with high cooling-power density. Applied Physics Letters, 2013, 102(11): 112901

    Article  Google Scholar 

  76. Crossley S, McGinnigle J R, Kar-Narayan S, et al. Finite-element optimisation of electrocaloric multilayer capacitors. Applied Physics Letters, 2014, 104(8): 082909

    Article  Google Scholar 

  77. Mark J E. Physical Properties of Polymers Handbook. New York: Springer, 2007, 156–159

    Book  Google Scholar 

  78. Plawsky J L. Transport Phenomena Fundamentals. 4th ed. CRC Press, 2009, 96–98

  79. Zeller R C, Pohl R O. Thermal conductivity and specific heat of noncrystalline solids. Physical Review. B, Solid State, 1971, 4(6): 2029–2041

    Article  Google Scholar 

  80. Li M D, Shen X Q, Chen X, et al. Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration. Nature Communications, 2022, 13(1): 5849(1–8)

    Article  Google Scholar 

  81. Nair B, Usui T, Crossley S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature, 2019, 575(7783): 468–472

    Article  Google Scholar 

  82. Nouchokgwe Y, Lheritier P, Usui T, et al. Materials efficiency of electrocaloric lead scandium tantalate multilayer capacitors. Scripta Materialia, 2022, 219: 114873

    Article  Google Scholar 

  83. Guo D, Gao J, Yu Y J, et al. Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system. International Journal of Heat and Mass Transfer, 2014, 72: 559–564

    Article  Google Scholar 

  84. Meng Y, Zhang Z, Wu H, et al. A cascade electrocaloric cooling device for large temperature lift. Nature Energy, 2020, 5(12): 996–1002

    Article  Google Scholar 

  85. Bo Y, Zhang Q, Cui H, et al. Electrostatic actuating double-unit electrocaloric cooling device with high efficiency. Advanced Energy Materials, 2021, 11(13): 2003771

    Article  Google Scholar 

  86. Cui H, Zhang Q, Bo Y, et al. Flexible microfluidic electrocaloric cooling capillary tube with giant specific device cooling power density. Joule, 2022, 6(1): 258–268

    Article  Google Scholar 

  87. Qian J, Peng R, Shen Z, et al. Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: in situ characterization and phase-field simulation. Advanced Materials, 2018, 31(5): 1801949

    Article  Google Scholar 

  88. Thakur Y, Zhang T, Iacob C, et al. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale, 2017, 9(31): 10992–10997

    Article  Google Scholar 

  89. Zhang T, Chen X, Zhang Q, et al. Dielectric enhancement over a broad temperature by nanofiller at ultra-low volume content in poly(ether methyl ether urea). Applied Physics Letters, 2020, 117(7): 072905

    Article  Google Scholar 

  90. Zhang B, Chen X, Lu W, et al. Morphology-induced dielectric enhancement in polymer nanocomposites. Nanoscale, 2021, 13(24): 10933–10942

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key R&D Program of China (No. 2020YFA0711500), and the National Natural Science Foundation of China (Grant No. 52076127), the Natural Science Foundation of Shanghai (Grant Nos. 20ZR1471700 and 22JC1401800), the State Key Laboratory of Mechanical System and Vibration (Grant No. MSVZD202211), the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (Project No. SL2020MS009), the Prospective Research Program at Shanghai Jiao Tong University (No. 19X160010008), the Student Innovation Center, and the Instrumental Analysis Center at Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshi Qian.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Li, Q., Du, F. et al. Polymeric nanocomposites for electrocaloric refrigeration. Front. Energy 17, 450–462 (2023). https://doi.org/10.1007/s11708-022-0858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-022-0858-0

Keywords

Navigation