Skip to main content
Log in

Advanced flexible humidity sensors: structures, techniques, mechanisms and performances

  • Mini-Review
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Flexible humidity sensors are widely used in many fields, such as environmental monitoring, agricultural soil moisture content determination, food quality monitoring and healthcare services. Therefore, it is essential to measure humidity accurately and reliably in different conditions. Flexible materials have been the focusing substrates of humidity sensors because of their rich surface chemical properties and structural designability. In addition, flexible materials have superior ductility for different conditions. In this review, we have summarized several sensing mechanisms, processing techniques, sensing layers and substrates for specific humidity sensing requirements. Aadditionally, we have sorted out some cases of flexible humidity sensors based on different functional materials. We hope this paper can contribute to the development of flexible humidity sensors in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng W H, Li Q H, Chen J, et al. A humidity-induced large electronic conductivity change of 107 on a metal-organic framework for highly sensitive water detection. Angewandte Chemie International Edition, 2023, 135(31): 202305977

    Article  Google Scholar 

  2. Zhu Y, Dong X, Cheng J, et al. Ultra-thin CoAl layered double hydroxide nanosheets for the construction of highly sensitive and selective QCM humidity sensor. Chinese Chemical Letters, 2023, 34(8): 107930

    Article  CAS  Google Scholar 

  3. Fang H, Yao D, Gao X, et al. Flexible sensors with tannin-modified vertical graphene arrays for the highly sensitive detection of humidity and strain. Sensors and Actuators A: Physical, 2023, 352: 114213

    Article  CAS  Google Scholar 

  4. Zhang D, Wang M, Zhang W, et al. Flexible humidity sensing and portable applications based on MoSe2 nanoflowers/copper tungstate nanoparticles. Sensors and Actuators B: Chemical, 2020, 304: 127234

    Article  CAS  Google Scholar 

  5. Chen L, Xu Y, Liu Y, et al. Flexible and transparent electronic skin sensor with sensing capabilities for pressure, temperature, and humidity. ACS Applied Materials & Interfaces, 2023, 15(20): 24923–24932

    Article  CAS  Google Scholar 

  6. Chen X, Ma K, Ou J, et al. Fast-response non-contact flexible humidity sensor based on direct-writing printing for respiration monitoring. Biosensors, 2023, 13(8): 792

    Article  CAS  Google Scholar 

  7. Cheng T, Zhang Y Z, Wang S, et al. Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Advanced Functional Materials, 2021, 31(24): 2101303

    Article  CAS  Google Scholar 

  8. Xu Z, Zhang D, Liu X, et al. Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor. Nano Energy, 2022, 94: 106881

    Article  CAS  Google Scholar 

  9. Zeng S, Pan Q, Huang Z, et al. Ultrafast response of self-powered humidity sensor of flexible graphene oxide film. Materials & Design, 2023, 226: 111683

    Article  CAS  Google Scholar 

  10. Guan X, Yu Y, Hou Z, et al. A flexible humidity sensor based on self-supported polymer film. Sensors and Actuators B: Chemical, 2022, 358: 131438

    Article  CAS  Google Scholar 

  11. Guo P, Tian B, Liang J, et al. An all-printed, fast response flexible humidity sensor based on hexagonal-WO3 nanowires for multifunctional applications. Advanced Materials, 2023, 35: 2304420

    Article  CAS  Google Scholar 

  12. Sun Y, Gao X, A S, et al. Hydrophobic multifunctional flexible sensors with a rapid humidity response for long-term respiratory monitoring. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2375–2386

    Article  CAS  Google Scholar 

  13. Zhang W, Piao S, Lin L, et al. Wearable and antibacterial HPMC-anchored conductive polymer composite strain sensor with high gauge factors under small strains. Chemical Engineering Journal, 2022, 435: 135068

    Article  CAS  Google Scholar 

  14. Liu Z, Qi D, Leow W R, et al. 3D-structured stretchable strain sensors for out-of-plane force detection. Advanced Materials, 2018, 30(26): 1707285

    Article  Google Scholar 

  15. Xie B, You H, Qian H, et al. High-performance flexible humidity sensor based on MoOx nanoparticle films for monitoring human respiration and non-contact sensing. ACS Applied Nano Materials, 2023, 6(8): 7011–7021

    Article  CAS  Google Scholar 

  16. Xu K, Fujita Y, Lu Y, et al. A wearable body condition sensor system with wireless feedback alarm functions. Advanced Materials, 2021, 33(18): 2008701

    Article  CAS  Google Scholar 

  17. Li G, Wen D. Sensing nanomaterials of wearable glucose sensors. Chinese Chemical Letters, 2021, 32(1): 221–228

    Article  CAS  Google Scholar 

  18. Jiang Y F, Guo C Y, Zhang X F, et al. Er2O3 nanospheres with fast response to humidity for non-contact sensing. Rare Metals, 2023, 42(1): 56–63

    Article  CAS  Google Scholar 

  19. Lin L, Choi Y, Chen T, et al. Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring. Chemical Engineering Journal, 2021, 419: 129513

    Article  CAS  Google Scholar 

  20. Soomro R A, Jawaid S, Zhu Q, et al. A mini-review on MXenes as versatile substrate for advanced sensors. Chinese Chemical Letters, 2020, 31(4): 922–930

    Article  CAS  Google Scholar 

  21. Wan Y, Zhang S, Zhao C, et al. A flexible humidity sensor with wide range, high linearity, and fast response based on ultralong Na2Ti3O7 nanowires. ACS Applied Materials & Interfaces, 2023, 15(13): 16865–16873

    Article  CAS  Google Scholar 

  22. Zhu Y, Zhang W, Xu J. Preparation of functional ordered mesoporous carbons and their application as the QCM sensor with ultra-low humidity. Chinese Chemical Letters, 2020, 31(8): 2150–2154

    Article  CAS  Google Scholar 

  23. Wang J, Lin Q, Zhou R, et al. Humidity sensors based on composite material of nano-BaTiO3 and polymer RMX. Sensors and Actuators B: Chemical, 2002, 81(2–3): 248–253

    Article  CAS  Google Scholar 

  24. Raj A M E S, Mallika C, Swaminathan K, et al. Zinc(II) oxide-zinc(II) molybdate composite humidity sensor. Sensors and Actuators B: Chemical, 2002, 81(2–3): 229–236

    Google Scholar 

  25. Zhang Y, Yu K, Jiang D, et al. Zinc oxide nanorod and nanowire for humidity sensor. Applied Surface Science, 2005, 242(1–2): 212–217

    Article  CAS  Google Scholar 

  26. Wu R J, Sun Y L, Lin C C, et al. Composite of TiO2 nanowires and Nafion as humidity sensor material. Sensors and Actuators B: Chemical, 2006, 115(1): 198–204

    Article  CAS  Google Scholar 

  27. Su P G, Wang C S. In situ synthesized composite thin films of MWCNTs/PMMA doped with KOH as a resistive humidity sensor. Sensors and Actuators B: Chemical, 2007, 124(2): 303–308

    Article  CAS  Google Scholar 

  28. Su P G, Wang C P. Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials. Sensors and Actuators B: Chemical, 2008, 129(2): 538–543

    Article  CAS  Google Scholar 

  29. Song X, Qi Q, Zhang T, et al. A humidity sensor based on KCl-doped SnO2 nanofibers. Sensors and Actuators B: Chemical, 2009, 138(1): 368–373

    Article  CAS  Google Scholar 

  30. Mahadeva S K, Yun S, Kim J. Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sensors and Actuators A: Physical, 2011, 165(2): 194–199

    Article  CAS  Google Scholar 

  31. Buvailo A I, Xing Y, Hines J, et al. TiO2/LiCl-based nanostructured thin film for humidity sensor application. ACS Applied Materials & Interfaces, 2011, 3(2): 528–533

    Article  CAS  Google Scholar 

  32. Li Y, Deng C, Yang M. A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity. Sensors and Actuators B: Chemical, 2012, 165(1): 7–12

    Article  CAS  Google Scholar 

  33. Taccola S, Greco F, Zucca A, et al. Characterization of freestanding PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS Applied Materials & Interfaces, 2013, 5(13): 6324–6332

    Article  CAS  Google Scholar 

  34. Li H, Liu B, Cai D, et al. High-temperature humidity sensors based on WO3-SnO2 composite hollow nanospheres. Journal of Materials Chemistry A, 2014, 2(19): 6854–6862

    Article  CAS  Google Scholar 

  35. Su P G, Shiu W L, Tsai M S. Flexible humidity sensor based on Au nanoparticles/graphene oxide/thiolated silica sol–gel film. Sensors and Actuators B: Chemical, 2015, 216: 467–475

    Article  CAS  Google Scholar 

  36. Ali S, Hassan A, Hassan G, et al. All-printed humidity sensor based on graphene/methyl-red composite with high sensitivity. Carbon, 2016, 105: 23–32

    Article  CAS  Google Scholar 

  37. Lu T, Pan H, Ma J, et al. Cellulose nanocrystals/polyacrylamide composites of high sensitivity and cycling performance to gauge humidity. ACS Applied Materials & Interfaces, 2017, 9: 18231–18237

    Article  CAS  Google Scholar 

  38. Park S Y, Kim Y H, Lee S Y, et al. Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. Journal of Materials Chemistry A, 2018, 6: 5016–5024

    Article  CAS  Google Scholar 

  39. Li N, Jiang Y, Zhou C, et al. High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires. ACS Applied Materials & Interfaces, 2019, 11:38116–38125

    Article  CAS  Google Scholar 

  40. Wu J, Yin C, Zhou J, et al. Ultrathin glass-based flexible, transparent, and ultrasensitive surface acoustic wave humidity sensor with ZnO nanowires and graphene quantum dots. ACS Applied Materials & Interfaces, 2020, 12(35): 39817–39825

    Article  CAS  Google Scholar 

  41. Gong L, Wang X, Zhang D, et al. Flexible wearable humidity sensor based on cerium oxide/graphitic carbon nitride nanocomposite self-powered by motion-driven alternator and its application for human physiological detection. Journal of Materials Chemistry A, 2021, 9: 5619–5629

    Article  CAS  Google Scholar 

  42. Tachibana S, Wang Y F, Sekine T, et al. A printed flexible humidity sensor with high sensitivity and fast response using a cellulose nanofiber/carbon black composite. ACS Applied Materials & Interfaces, 2022, 14(4): 5721–5728

    Article  CAS  Google Scholar 

  43. Yuan Y, Peng B, Chi H, et al. Layer-by-layer inkjet printing SPS:PEDOT NP/RGO composite film for flexible humidity sensors. RSC Advances, 2016, 6(114): 113298–113306

    Article  CAS  Google Scholar 

  44. Adepu V, Bokka N, Mattela V, et al. A highly electropositive ReS2 based ultra-sensitive flexible humidity sensor for multifunctional applications. New Journal of Chemistry, 2021, 45(13): 5855–5862

    Article  CAS  Google Scholar 

  45. Jeong W, Song J, Bae J, et al. Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Applied Materials & Interfaces, 2019, 11(47): 44758–44763

    Article  CAS  Google Scholar 

  46. Tripathy A, Sharma P, Sahoo N, et al. Moisture sensitive inimitable Armalcolite/PDMS flexible sensor: a new entry. Sensors and Actuators B: Chemical, 2018, 262: 211–220

    Article  CAS  Google Scholar 

  47. Liu H, Zheng H, Xiang H, et al. Paper-based wearable sensors for humidity and VOC detection. ACS Sustainable Chemistry & Engineering, 2021, 9(50): 16937–16945

    Article  CAS  Google Scholar 

  48. Turkani V S, Maddipatla D, Narakathu B B, et al. A highly sensitive printed humidity sensor based on a functionalized MWCNT/HEC composite for flexible electronics application. Nanoscale Advances, 2019, 1(6): 2311–2322

    Article  CAS  Google Scholar 

  49. Du Z, Yu X, Han Y. Inkjet printing of viscoelastic polymer inks. Chinese Chemical Letters, 2018, 29(3): 399–404

    Article  CAS  Google Scholar 

  50. Luo X. Application of inkjet-printing technology in developing indicators/sensors for intelligent packaging systems. Current Opinion in Food Science, 2022, 46: 100868

    Article  CAS  Google Scholar 

  51. Li N, Jiang Y, Xiao Y, et al. A fully inkjet-printed transparent humidity sensor based on a Ti3C2/Ag hybrid for touchless sensing of finger motion. Nanoscale, 2019, 11(44): 21522–21531

    Article  CAS  Google Scholar 

  52. Aziz S, Bum K G, Yang Y J, et al. Fabrication of ZnSnO3 based humidity sensor onto arbitrary substrates by micro-nano scale transfer printing. Sensors and Actuators A: Physical, 2016, 246: 1–8

    Article  CAS  Google Scholar 

  53. Zhang R, Peng B, Yuan Y. Flexible printed humidity sensor based on poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/Au nanoparticles with high performance. Composites Science and Technology, 2018, 168: 118–125

    Article  Google Scholar 

  54. de Aguiar M F, Leal A N R, de Melo C P, et al. Polypyrrole-coated electrospun polystyrene films as humidity sensors. Talanta, 2021, 234: 122636

    Article  CAS  Google Scholar 

  55. Cheng Y, Wang H, Li L, et al. Flexible photoluminescent humidity sensing material based on electrospun PVA nanofibers comprising surface-carboxylated QDs. Sensors and Actuators B: Chemical, 2019, 284: 258–264

    Article  CAS  Google Scholar 

  56. Tseng S F, Tsai Y S. Highly sensitive humidity sensors based on Li-C3N4 composites on porous graphene flexible electrodes. Applied Surface Science, 2022, 606: 155001

    Article  CAS  Google Scholar 

  57. Yuan M, Luo F, Wang Z, et al. Smart wearable band-aid integrated with high-performance micro-supercapacitor, humidity and pressure sensor for multifunctional monitoring. Chemical Engineering Journal, 2023, 453: 139898

    Article  CAS  Google Scholar 

  58. Zhang X, Maddipatla D, Bose A K, et al. Printed carbon nanotubes-based flexible resistive humidity sensor. IEEE Sensors Journal, 2020, 20(21): 12592–12601

    Article  CAS  Google Scholar 

  59. Tripathy A, Sharma P, Pramanik S, et al. Armalcolite nanocomposite: a new paradigm for flexible capacitive humidity sensor. IEEE Sensors Journal, 2021, 21(13): 14685–14692

    Article  CAS  Google Scholar 

  60. Han M, Ding X, Duan H, et al. Ultrasensitive humidity sensors with synergy between superhydrophilic porous carbon electrodes and phosphorus-doped dielectric electrolyte. ACS Applied Materials & Interfaces, 2023, 15(7): 9740–9750

    Article  CAS  Google Scholar 

  61. Liu H, Xiang H, Wang Y, et al. A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. ACS Applied Materials & Interfaces, 2019, 11(43): 40613–40619

    Article  CAS  Google Scholar 

  62. Zhang H, Chen X, Zhang Z, et al. Highly-crystalline triazine-PDI polymer with an enhanced built-in electric field for full-spectrum photocatalytic phenol mineralization. Applied Catalysis B: Environmental, 2021, 287: 119957

    Article  CAS  Google Scholar 

  63. Nitta R, Lin H E, Kubota Y, et al. CuO nanostructure-based flexible humidity sensors fabricated on PET substrates by spinspray method. Applied Surface Science, 2022, 572: 151352

    Article  CAS  Google Scholar 

  64. Wang D, Zhang D, Li P, et al. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Letters, 2021, 13(1): 57

    Article  Google Scholar 

  65. Altenberend U, Molina-Lopez F, Oprea A, et al. Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability. Sensors and Actuators B: Chemical, 2013, 187: 280–287

    Article  CAS  Google Scholar 

  66. Ni L, Li X, Cai F, et al. Printable and flexible humidity sensor based on graphene-oxide-supported MoTe2 nanosheets for multifunctional applications. Nanomaterials, 2023, 13(8): 1309

    Article  CAS  Google Scholar 

  67. Zhang D Z, Xu Z Y, Yang Z M, et al. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy, 2020, 67: 104251

    Article  CAS  Google Scholar 

  68. Niu H, Yue W, Li Y, et al. Ultrafast-response/recovery capacitive humidity sensor based on arc-shaped hollow structure with nanocone arrays for human physiological signals monitoring. Sensors and Actuators B: Chemical, 2021, 334: 129637

    Article  CAS  Google Scholar 

  69. Qin J, Yang X, Shen C, et al. Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy, 2022, 101: 107549

    Article  CAS  Google Scholar 

  70. Lu Y, Wang M Y, Wang D Y, et al. Flexible impedance sensor based on Ti3C2Tx MXene and graphitic carbon nitride nanohybrid for humidity-sensing application with ultrahigh response. Rare Metals, 2023, 42(7): 2204–2213

    Article  CAS  Google Scholar 

  71. Pan T, Yu Z, Huang F, et al. Flexible humidity sensor with high sensitivity and durability for respiratory monitoring using near-field electrohydrodynamic direct-writing method. ACS Applied Materials & Interfaces, 2023, 15(23): 28248–28257

    Article  CAS  Google Scholar 

  72. Guo C, Xin Y, Liu Y, et al. Noncontact sensing for water area scanning identification based on Ho2O3/GO humidity sensor. Sensors and Actuators B: Chemical, 2023, 385: 133683

    Article  CAS  Google Scholar 

  73. Khan S A, Saqib M, Rehman M M, et al. A full-range flexible and printed humidity sensor based on a solution-processed P(VDF-TrFE)/graphene-flower composite. Nanomaterials, 2021, 11(8): 1915

    Article  CAS  Google Scholar 

  74. Wang Y, Hou S, Li T, et al. Flexible capacitive humidity sensors based on ionic conductive wood-derived cellulose nanopapers. ACS Applied Materials & Interfaces, 2020, 12(37): 41896–41904

    Article  CAS  Google Scholar 

  75. Khan S A, Saqib M, Khan M, et al. Wide-range, fast-responsive humidity sensor based on In2Se3/PEDOT:PSS nanocomposite. ACS Applied Electronic Materials, 2023, 5(8): 4473–4484

    Article  CAS  Google Scholar 

  76. Shen D, Liu Y, Yu M, et al. Bioinspired flexible and highly responsive PVDF-based humidity sensors for respiratory monitoring. Polymer, 2022, 254: 125103

    Article  CAS  Google Scholar 

  77. Hsiao F R, Liao Y C. Printed micro-sensors for simultaneous temperature and humidity detection. IEEE Sensors Journal, 2018, 18(16): 6788–6793

    Article  CAS  Google Scholar 

  78. Zhao J, Li L, Zhang Y, et al. Novel coaxial fiber-shaped sensing system integrated with an asymmetric supercapacitor and a humidity sensor. Energy Storage Materials, 2018, 15: 315–323

    Article  Google Scholar 

  79. Wei Z, Huang J, Chen W, et al. Fabrication and characterization of flexible capacitive humidity sensors based on graphene oxide on porous PTFE substrates. Sensors, 2021, 21(15): 5118

    Article  CAS  Google Scholar 

  80. He H, Yao Y, Liu T. Flexible humidity sensor based on crosslinked polyethyleneimine/tannic acid and porous carbonaceous interdigitated electrode. Sensors and Actuators B: Chemical, 2023, 393: 134194

    Article  CAS  Google Scholar 

  81. Chani M T S. Fabrication and characterization of chitosan–CeO2-CdO nanocomposite based impedimetric humidity sensors. International Journal of Biological Macromolecules, 2022, 194: 377–383

    Article  CAS  Google Scholar 

  82. Wang Y, Zhang L, Zhang Z, et al. High-sensitivity wearable and flexible humidity sensor based on graphene oxide/non-woven fabric for respiration monitoring. Langmuir, 2020, 36(32): 9443–9448

    Article  CAS  Google Scholar 

  83. Kan Y, Wang S, Meng J, et al. Flexible wearable and self-powered humidity sensor based on moisture-dependent voltage generation. Microchemical Journal, 2021, 168: 106373

    Article  CAS  Google Scholar 

  84. Ni X, Luo J, Liu R, et al. Facile fabrication of flexible UV-cured polyelectrolyte-based coatings for humidity sensing. Sensors and Actuators B: Chemical, 2021, 329: 129149

    Article  CAS  Google Scholar 

  85. Yadav B C, Sikarwar S, Yadav R, et al. Preparation of zinc(II) nitrate poly acryl amide (PAAm) and its optoelectronic application for humidity sensing. Journal of Materials Science Materials in Electronics, 2018, 29(9): 7770–7777

    Article  CAS  Google Scholar 

  86. Shaukat R A, Khan M U, Saqib Q M, et al. Two dimensional Zirconium diselenide based humidity sensor for flexible electronics. Sensors and Actuators B: Chemical, 2022, 358: 131507

    Article  CAS  Google Scholar 

  87. Ganbold E, Kim E S, Li Y, et al. Highly sensitive interdigitated capacitive humidity sensors based on sponge-like nanoporous PVDF/LiCl composite for real-time monitoring. ACS Applied Materials & Interfaces, 2023, 15(3): 4559–4568

    Article  CAS  Google Scholar 

  88. Han S, Kim W, Lee H J, et al. Continuous and real-time measurement of plant water potential using an AAO-based capacitive humidity sensor for irrigation control. ACS Applied Electronic Materials, 2022, 4(12): 5922–5932

    Article  CAS  Google Scholar 

  89. Luo Y, Pei Y, Feng X, et al. Silk fibroin based transparent and wearable humidity sensor for ultra-sensitive respiration monitoring. Materials Letters, 2020, 260: 126945

    Article  CAS  Google Scholar 

  90. Park H, Lee S, Jeong S, et al. Enhanced moisture-reactive hydrophilic-PTFE-based flexible humidity sensor for real-time monitoring. Sensors, 2018, 18(3): 921

    Article  Google Scholar 

  91. Duan Z, Yuan Z, Jiang Y, et al. Amorphous carbon material of daily carbon ink: emerging applications in pressure, strain, and humidity sensors. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2023, 11(17): 5585–5600

    Article  CAS  Google Scholar 

  92. Lin L, Wang L, Li B, et al. Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chemical Engineering Journal, 2020, 385: 123391

    Article  CAS  Google Scholar 

  93. Li C, Zhang Y, Yang S, et al. A flexible tissue–carbon nanocoil-carbon nanotube-based humidity sensor with high performance and durability. Nanoscale, 2022, 14(18): 7025–7038

    Article  CAS  Google Scholar 

  94. Peng X, Chu J, Aldalbahi A, et al. A flexible humidity sensor based on KC-MWCNTs composites. Applied Surface Science, 2016, 387: 149–154

    Article  CAS  Google Scholar 

  95. Jin X F, Liu C R L, Chen L, et al. Inkjet-printed MoS2/PVP hybrid nanocomposite for enhanced humidity sensing. Sensors and Actuators A: Physical, 2020, 316: 112388

    Article  CAS  Google Scholar 

  96. Ahmed H, Abduljalil H M, Hashim A. Structural, optical and electronic properties of novel (PVA-MgO)/SiC nanocompo-sites films for humidity sensors. Transactions on Electrical and Electronic Materials, 2019, 20(3): 218–232

    Article  Google Scholar 

  97. Angadi V J, Chethan B, Pattar V, et al. Graphene-cobalt chromate ceramics composite for humidity sensor applications. Journal of Alloys and Compounds, 2023, 947: 169438

    Article  Google Scholar 

  98. Lei D, Zhang Q, Liu N, et al. Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism. Advanced Functional Materials, 2022, 32(10): 2107330

    Article  CAS  Google Scholar 

  99. Zhang D, Zong X, Wu Z. Fabrication of tin disulfide/graphene oxide nanoflower on flexible substrate for ultrasensitive humidity sensing with ultralow hysteresis and good reversibility. Sensors and Actuators B: Chemical, 2019, 287: 398–407

    Article  CAS  Google Scholar 

  100. Shooshtari L, Rafiefard N, Barzegar M, et al. Self-powered humidity sensors based on SnS2 nanosheets. ACS Applied Nano Materials, 2022, 5(11): 17123–17132

    Article  CAS  Google Scholar 

  101. Zhang D, Chang H, Li P, et al. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sensors and Actuators B: Chemical, 2016, 225: 233–240

    Article  CAS  Google Scholar 

  102. Ragazzini I, Castagnoli R, Gualandi I, et al. A resistive sensor for humidity detection based on cellulose/polyaniline. RSC Advances, 2022, 12(43): 28217–28226

    Article  CAS  Google Scholar 

  103. Ahmed H, Abduljalil H M, Hashim A. Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Transactions on Electrical and Electronic Materials, 2019, 20(3): 206–217

    Article  Google Scholar 

  104. Zhang L, Tan Q, Wang Y, et al. Wirelessly powered multifunctional wearable humidity sensor based on RGO–WS2 heterojunctions. Sensors and Actuators B: Chemical, 2021, 329: 129077

    Article  CAS  Google Scholar 

  105. Karunarathne T S E F, Wijesinghe W P S L, Rathuwadu N P W, et al. Fabrication and characterization of partially conjugated poly (vinyl alcohol) based resistive humidity sensor. Sensors and Actuators A: Physical, 2020, 314: 112263

    Article  CAS  Google Scholar 

  106. Zhang J, Dichiara A B, Novosselov I, et al. Polyacrylic acid coated carbon nanotube–paper composites for humidity and moisture sensing. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2019, 7(18): 5374–5380

    Article  CAS  Google Scholar 

  107. Kafy A, Akther A, Shishir M I R, et al. Cellulose nanocrystal/graphene oxide composite film as humidity sensor. Sensors and Actuators A: Physical, 2016, 247: 221–226

    Article  CAS  Google Scholar 

  108. Songkeaw P, Onlaor K, Thiwawong T, et al. Transparent and flexible humidity sensor based on graphene oxide thin films prepared by electrostatic spray deposition technique. Journal of Materials Science: Materials in Electronics, 2020, 31(15): 12206–12215

    CAS  Google Scholar 

  109. Chen M, Wang Z, Li K, et al. Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Advanced Fiber Materials, 2021, 3(1): 1–13

    Article  Google Scholar 

  110. Zhang D, Mao R, Song X, et al. Humidity sensing properties and respiratory behavior detection based on chitosan-halloysite nanotubes film coated QCM sensor combined with support vector machine. Sensors and Actuators B: Chemical, 2023, 374: 132824

    Article  CAS  Google Scholar 

  111. Rianjanu A, Julian T, Hidayat S N, et al. Quartz crystal microbalance humidity sensors integrated with hydrophilic polyethyleneimine-grafted polyacrylonitrile nanofibers. Sensors and Actuators B: Chemical, 2020, 319: 128286

    Article  CAS  Google Scholar 

  112. Liu X, Zhang D, Wang D, et al. A humidity sensing and respiratory monitoring system constructed from quartz crystal microbalance sensors based on a chitosan/polypyrrole composite film. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(25): 14524–14533

    Article  CAS  Google Scholar 

  113. Lv S, Shuai L, Ding W, et al. Flexible humidity sensitive fiber with swellable metal-organic frameworks. Advanced Fiber Materials, 2021, 3(2): 107–116

    Article  CAS  Google Scholar 

  114. Agmon N. The Grotthuss mechanism. Chemical Physics Letters, 1995, 244(5–6): 456–462

    Article  CAS  Google Scholar 

  115. Kuzubasoglu B A. Recent studies on the humidity sensor: a mini review. ACS Applied Electronic Materials, 2022, 4(10): 4797–4807

    Article  Google Scholar 

  116. Li J, Wu H, Cao L, et al. Enhanced proton conductivity of sulfonated polysulfone membranes under low humidity via the incorporation of multifunctional graphene oxide. ACS Applied Nano Materials, 2019, 2(8): 4734–4743

    Article  CAS  Google Scholar 

  117. Wu J, Ma X, Li C, et al. A novel photon-enzyme cascade catalysis system based on hybrid HRP-CN/Cu3(PO4)2 nanoflowers for degradation of BPA in water. Chemical Engineering Journal, 2022, 427: 131808

    Article  CAS  Google Scholar 

  118. Jiang W, Zhang F, Lin Q. Flexible relative humidity sensor based on reduced graphene oxide and interdigital electrode for smart home. Micro & Nano Letters, 2022, 17(6): 134–138

    Article  CAS  Google Scholar 

  119. Liang Y, Ding Q, Wang H, et al. Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Letters, 2022, 14(1): 183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review was supported by the National Natural Science Foundation of China (No. 22008014), the Changzhou Young Scientific and Technological Talents Promotion Project, the Qing Lan Project of Jiangsu Province and China Scholarship Council (CSC). This work was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20215710100170) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2023R1A2C200769911).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liwei Lin, Zhongyu Li or Yuanzhe Piao.

Ethics declarations

Declaration of competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, Y., Lin, L. et al. Advanced flexible humidity sensors: structures, techniques, mechanisms and performances. Front. Mater. Sci. 17, 230662 (2023). https://doi.org/10.1007/s11706-023-0662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0662-8

Keywords

Navigation