Skip to main content
Log in

Chemical vapor deposited diamond with versatile grades: from gemstone to quantum electronics

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Chemical vapor deposited (CVD) diamond as a burgeoning multifunctional material with tailored quality and characteristics can be artificially synthesized and controlled for various applications. Correspondingly, the application-related “grade” concept associated with materials choice and design was gradually formulated, of which the availability and the performance are optimally suited. In this review, the explicit diversity of CVD diamond and the clarification of typical grades for applications, i.e., from resplendent gem-grade to promising quantum-grade, were systematically summarized and discussed, according to the crystal quality and main consideration of ubiquitous nitrogen impurity content as well as major applications. Realizations of those, from quantum-grade with near-ideal crystal to electronic-grade having extremely low imperfections and then to optical, thermal as well as mechanical-grade needing controlled flaws and allowable impurities, would competently fulfill the multi-field application prospects with appropriate choice in terms of cost and quality. Exceptionally, wide range defects and impurities in the gem-grade diamond (only indicating single crystal), which are detrimental for technology applications, endows CVD crystals with fancy colors to challenge their natural counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogden J. Diamonds: An Early History of the King of Gems. New Haven, USA: Yale University Press, 2018

    Google Scholar 

  2. Breeding C M. Colored diamonds: the rarity and beauty of imperfection. Gems & Gemology, 2018, 54: 275

    Google Scholar 

  3. Butler J E, Woodin R L. Thin film diamond growth mechanisms. Philosophical Transactions of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences, 1993, 342(1664): 209–224

    Article  CAS  Google Scholar 

  4. Renfro N, Koivula J I, Wang W Y, et al. Synthetic gem materials in the 2000s: a decade in review. Gems & Gemology, 2010, 46(4): 260–273

    Article  CAS  Google Scholar 

  5. Amaratunga G A J. A dawn for carbon electronics? Science, 2002, 297(5587): 1657–1658

    Article  CAS  Google Scholar 

  6. Liu T, Raabe D, Mao W M. A review of crystallographic textures in chemical vapor-deposited diamond films. Frontiers of Materials Science, 2010, 4(1): 1–16

    Article  CAS  Google Scholar 

  7. Cumont A, Pitt A R, Lambert P A, et al. Properties, mechanism and applications of diamond as an antibacterial material. Functional Diamond, 2021, 1(1): 1–28

    Article  Google Scholar 

  8. Zheng Y T, Wei J J, Liu J L, et al. Carbon materials: the burgeoning promise in electronics. International Journal of Minerals, Metallurgy and Materials, 2022, doi:https://doi.org/10.1007/s12613-021-2358-3 (in press)

  9. Yang H C, Ma Y D, Dai Y. Progress of structural and electronic properties of diamond: a mini review. Functional Diamond, 2021, 1(1): 150–159

    Article  Google Scholar 

  10. Mildren R P, Rabeau J R, eds. Optical Engineering of Diamond. 1st ed. Weinheim, Germany: Wiley-VCH, 2013

    Google Scholar 

  11. Liu K, Zhang S, Ralchenko V, et al. Tailoring of typical color centers in diamond for photonics. Advanced Materials, 2021, 33(6): 2000891

    Article  CAS  Google Scholar 

  12. Bland S. Diamond circuits are forever: carbon. Materials Today, 2011, 14(10): 460

    Google Scholar 

  13. Graebner J E, Reiss M E, Seibles L, et al. Phonon scattering in chemical-vapor-deposited diamond. Physical Review B, 1994, 50(6): 3702–3713

    Article  CAS  Google Scholar 

  14. Worner E, Wild C, Muller-Sebert W, et al. Thermal conductivity of CVD diamond films: high-precision, temperature-resolved measurements. Diamond and Related Materials, 1996, 5(6–8): 688–692

    Article  Google Scholar 

  15. Wang W H, Dai B, Wang Y, et al. Recent progress of diamond optical window-related components. Materials Science and Technology, 2020, 28: 42–57

    Google Scholar 

  16. Kasugai A, Sakamoto K, Takahashi K, et al. Chemical vapor deposition diamond window for high-power and long pulse millimeter wave transmission. Review of Scientific Instruments, 1998, 69(5): 2160–2165

    Article  CAS  Google Scholar 

  17. Coe S E, Sussmann R S. Optical, thermal and mechanical properties of CVD diamond. Diamond and Related Materials, 2000, 9(9–10): 1726–1729

    Article  CAS  Google Scholar 

  18. Heidinger R, Dammertz G, Meier A, et al. CVD diamond windows studied with low-and high-power millimeter waves. IEEE Transactions on Plasma Science, 2002, 30(3): 800–807

    Article  CAS  Google Scholar 

  19. Mildren R P. Intrinsic optical properties of diamond. In: Mildren R P, Rabeau J R, eds. Optical Engineering of Diamond. 1st ed. Weinheim, Germany: Wiley-VCH, 2013, 1–34

    Chapter  Google Scholar 

  20. Marinelli M, Milani E, Paoletti A, et al. Growth of detector grade CVD diamond films and microscopic interpretation of their efficiency and charge collection distance in the normal and pumped states. Diamond and Related Materials, 2001, 10(9–10): 1783–1787

    Article  CAS  Google Scholar 

  21. Bergonzo P, Barrett R, Hainaut O, et al. Imaging of the sensitivity in detector grade polycrystalline diamonds using micro-focused X-ray beams. Diamond and Related Materials, 2002, 11(3–6): 418–422

    Article  CAS  Google Scholar 

  22. Okushi H, Watanabe H, Ri S, et al. Device-grade homoepitaxial diamond film growth. Journal of Crystal Growth, 2002, 237–239: 1269–1276

    Article  Google Scholar 

  23. Takeuchi D, Watanabe H, Yamanaka S, et al. Defects in device grade homoepitaxial diamond thin films grown with ultra-low CH4/H2 conditions by microwave-plasma chemical vapor deposition. Physica Status Solidi A: Applied Research, 1999, 174(1): 101–115

    Article  CAS  Google Scholar 

  24. Takeuchi D, Yamanaka S, Watanabe H, et al. Device grade B-doped homoepitaxial diamond thin films. Physica Status Solidi A: Applied Research, 2001, 186(2): 269–280

    Article  CAS  Google Scholar 

  25. Wort C J H, Balmer R S. Diamond as an electronic material. Materials Today, 2008, 11(1–2): 22–28

    Article  CAS  Google Scholar 

  26. Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297(5587): 1670–1672

    Article  CAS  Google Scholar 

  27. Lee S T, Lifshitz Y. The road to diamond wafers. Nature, 2003, 424(6948): 500–501

    Article  CAS  Google Scholar 

  28. Prawer S, Greentree A D. Applied physics: diamond for quantum computing. Science, 2008, 320(5883): 1601–1602

    Article  CAS  Google Scholar 

  29. Field J E. The mechanical and strength properties of diamond. Reports on Progress in Physics, 2012, 75(12): 126505

    Article  CAS  Google Scholar 

  30. Garifo S, Stanicki D, Ayata G, et al. Nanodiamonds as nanomaterial for biomedical field. Frontiers of Materials Science, 2021, 15(3): 334–351

    Article  Google Scholar 

  31. Simakov S K. On the origin of large type IIa gem diamonds. Ore Geology Reviews, 2018, 102: 195–203

    Article  Google Scholar 

  32. Ke J, Lu T J, Lan Y, et al. Recent developments in detection and gemology in China, particularly for Chinese synthetic diamonds. Gems & Gemology, 2018, 54(3): 268

    Google Scholar 

  33. Kasu M. Diamond epitaxy: basics and applications. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 317–328

    Article  CAS  Google Scholar 

  34. Eaton-Magaña S, Breeding C M. Features of synthetic diamonds. Gems & Gemology, 2018, 54(2): 202–204

    Article  Google Scholar 

  35. Wang W Y, Moses T, Linares R C, et al. Gem-quality synthetic diamonds grown by a chemical vapor deposition (CVD) method. Gems & Gemology, 2003, 39(4): 268–283

    Article  Google Scholar 

  36. Schwander M, Partes K. A review of diamond synthesis by CVD processes. Diamond and Related Materials, 2011, 20(9): 1287–1301

    Article  CAS  Google Scholar 

  37. Balmer R S, Brandon J R, Clewes S L, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications. Journal of Physics: Condensed Matter, 2009, 21(36): 364221

    CAS  Google Scholar 

  38. Thoms B D, Russell J N, Pehrsson P E, et al. Adsorption and abstraction of hydrogen on polycrystalline diamond. The Journal of Chemical Physics, 1994, 100(11): 8425–8431

    Article  Google Scholar 

  39. Diggle P L, Haenens-Johansson U F S, Wang W Y, et al. Diamond at the diffraction limit: optical characterization of synthetic diamond. Gems & Gemology, 2018, 54: 265

    Google Scholar 

  40. Shigley J E, Breeding C M. Optical defects in diamond: a quick reference chart. Gems & Gemology, 2013, 49(2): 107–111

    Article  Google Scholar 

  41. Fairchild B A, Rubanov S, Lau D W M, et al. Mechanism for the amorphisation of diamond. Advanced Materials, 2012, 24(15): 2024–2029

    Article  CAS  Google Scholar 

  42. Fairchild B A, Olivero P, Rubanov S, et al. Fabrication of ultrathin single-crystal diamond membranes. Advanced Materials, 2008, 20(24): 4793–4798

    Article  CAS  Google Scholar 

  43. Breeding C M, Shen A H, Eaton-Magaña S, et al. Developments in gemstone analysis techniques and instrumentation during the 2000s. Gems & Gemology, 2010, 46(3): 241–257

    Article  CAS  Google Scholar 

  44. Koenka I Y, Kauffmann Y, Hoffman A. Direct visualization and characterization of chemical bonding and phase composition of grain boundaries in polycrystalline diamond films by transmission electron microscopy and high-resolution electron energy loss spectroscopy. Applied Physics Letters, 2011, 99(20): 201907

    Article  Google Scholar 

  45. Ohmagari S, Yamada H, Tsubouchi N, et al. Toward high-performance diamond electronics: control and annihilation of dislocation propagation by metal-assisted termination. Physica Status Solidi A: Applications and Materials Science, 2019, 216(21): 1900498

    Article  CAS  Google Scholar 

  46. Teraji T, Yamamoto T, Watanabe K, et al. Homoepitaxial diamond film growth: high purity, high crystalline quality, isotopic enrichment, and single-color center formation. Physica Status Solidi A: Applications and Materials Science, 2015, 212(11): 2365–2384

    Article  CAS  Google Scholar 

  47. Shikata S, Yamaguchi K, Fujiwara A, et al. X-ray absorption fine structure study of heavily P doped (1 1 1) and (0 0 1) diamond. Applied Physics Letters, 2017, 110(7): 072106

    Article  Google Scholar 

  48. Breeding C M, Shigley J E. The “type” classification system of diamonds and its importance in gemology. Gems & Gemology, 2009, 45(2): 96–111

    Article  CAS  Google Scholar 

  49. Ashfold M N R, Goss J P, Green B L, et al. Nitrogen in diamond. Chemical Reviews, 2020, 120(12): 5745–5794

    Article  CAS  Google Scholar 

  50. Nebel C E. Nitrogen-vacancy doped CVD diamond for quantum applications: a review. Semiconductors and Semimetals, 2020, 103: 73–136

    Article  CAS  Google Scholar 

  51. Howell D. Strain-induced birefringence in natural diamond: a review. European Journal of Mineralogy, 2012, 24(4): 575–585

    Article  CAS  Google Scholar 

  52. Groat L. Scientific study of colored gem deposits and modern fingerprinting methods. Gems & Gemology, 2018, 54(3): 277–278

    Google Scholar 

  53. Pan L S, Kania D R, Pianetta P, et al. Temperature dependent mobility in single-crystal and chemical vapor-deposited diamond. Journal of Applied Physics, 1993, 73(6): 2888–2894

    Article  CAS  Google Scholar 

  54. Hartl A, Garrido J A, Nowy S, et al. The ion sensitivity of surface conductive single crystalline diamond. Journal of the American Chemical Society, 2007, 129(5): 1287–1292

    Article  Google Scholar 

  55. Onstad E, Clarke D. How man-made diamonds have grown to threaten natural gems. Reuters Business News, 2018

  56. Kitawaki H. Undisclosed samples of large CVD synthetic diamond. Gems & Gemology, 2013, 49(1): 60–61

    Google Scholar 

  57. Renfro N D, Koivula J I, Muyal J, et al. Inclusion in natural, synthetic, and treated diamond. Gems & Gemology, 2018, 54(4): 428–429

    Google Scholar 

  58. Cohen H, Ruthstein S. Evaluating the color and nature of diamonds via EPR spectroscopy. Gems & Gemology, 2018, 54(3): 276

    Google Scholar 

  59. Magaña S E, Ardon T, Smit K V, et al. Natural-color pink, purple, red, and brown diamonds: band of many colors. Gems & Gemology, 2018, 54(4): 352–377

    Google Scholar 

  60. Eaton-Magana S E, Ardon T, Zaitsev A M. LPHT annealing of brown-to-yellow type Ia diamonds. Diamond and Related Materials, 2017, 77: 159–170

    Article  CAS  Google Scholar 

  61. Gu T T, Wang W Y. Optical defects in milky type IaB diamonds. Diamond and Related Materials, 2018, 89: 322–329

    Article  CAS  Google Scholar 

  62. Collins A T. The detection of colour-enhanced and synthetic gem diamonds by optical spectroscopy. Diamond and Related Materials, 2003, 12(10–11): 1976–1983

    Article  CAS  Google Scholar 

  63. Fritsch E, Shigley J E, Moses T, et al. A green diamond a study of chameleonism. In: Content D J, ed. Leeds, UK: Maney and Sons Ltd., 1995

  64. Goss J P, Ewels C P, Briddon P R, et al. Bistable N2-H complexes: the first proposed structure of a H-related colour-causing defect in diamond. Diamond and Related Materials, 2011, 20(7): 896–901

    Article  CAS  Google Scholar 

  65. Fujita N, Jones R, Öberg S, et al. Large spherical vacancy clusters in diamond — origin of the brown colouration?. Diamond and Related Materials, 2009, 18(5–8): 843–845

    Article  CAS  Google Scholar 

  66. Eaton-Magana S, McElhenny G, Breeding C M, et al. Comparison of gemological and spectroscopic features in type IIa and Ia natural pink diamonds. Diamond and Related Materials, 2020, 105: 107784

    Article  CAS  Google Scholar 

  67. Hainschwang T, Notari F, Fritsch E, et al. Natural, untreated diamonds showing the A, B and C infrared absorptions (“ABC diamonds”), and the H2 absorption. Diamond and Related Materials, 2006, 15(10): 1555–1564

    Article  CAS  Google Scholar 

  68. Zaitsev A M, Kazuchits N M, Kazuchits V N, et al. Nitrogen-doped CVD diamond: nitrogen concentration, color and internal stress. Diamond and Related Materials, 2020, 105: 107794

    Article  CAS  Google Scholar 

  69. De Weerdt F, Van Royen J. Defects in coloured natural diamonds. Diamond and Related Materials, 2001, 10(3–7): 474–479

    Article  CAS  Google Scholar 

  70. Jones R. Dislocations, vacancies and the brown colour of CVD and natural diamond. Diamond and Related Materials, 2009, 18(5–8): 820–826

    Article  CAS  Google Scholar 

  71. Wang W Y, Moe K S. CVD Synthetic diamond with fancy vivid orange color. Gems & Gemology, 2014, 50(4): 299

    Google Scholar 

  72. Wang W Y, Moses T. Large pinkish orange CVD synthetic diamond. Gems & Gemology, 2018, 54(2): 216–217

    Google Scholar 

  73. Moe K S, Wang W Y, D’Haenens-Johansson U. Yellow CVD synthetic diamond. Gems & Gemology, 2014, 50(2): 154–155

    Google Scholar 

  74. Law B P L, Wang W Y. CVD synthetic diamond over 5 carats identified. Gems & Gemology, 2016, 52(4): 414–416

    Google Scholar 

  75. Poon T, Lo C, Law B. Ring with a CVD synthetic melee. Gems & Gemology, 2016, 52(1): 75–76

    Google Scholar 

  76. Magaña S. CVD synthetic diamond with unusual DiamondView image. Gems & Gemology, 2014, 50(1): 67–68

    Google Scholar 

  77. Tang S, Su J, Lu T, et al. A melee-size CVD synthetic diamond in pearl and diamond jewelry. Gems & Gemology, 2017, 53(3): 382–383

    Google Scholar 

  78. Willems B, Tallaire A, Achard J. Optical study of defects in thick undoped CVD synthetic diamond layers. Diamond and Related Materials, 2014, 41: 25–33

    Article  CAS  Google Scholar 

  79. Eaton-Magaña S, Shigley J E. Observations on CVD-grown synthetic diamonds: a review. Gems & Gemology, 2016, 52(3): 222–245

    Article  Google Scholar 

  80. Butler J E. Chemical vapor deposited diamond: maturity and diversity. Electrochemical Society Interface, 2003, 12(1): 22–26

    Article  CAS  Google Scholar 

  81. Fritsch E, Phelps A W. Type IIb diamond thin films deposited onto near-colorless natural gem diamonds. Diamond and Related Materials, 1993, 2(2–4): 70–74

    Article  CAS  Google Scholar 

  82. Ardon T, McElhenny G. Synthetic diamond CVD layer grown on natural diamond. Gems & Gemology, 2019, 55(1): 97–99

    Google Scholar 

  83. Wang W Y, D’Haenens-Johansson U F S, Johnson P, et al. CVD synthetic diamonds from gemesis corp. Gems & Gemology, 2012, 48(2): 80–97

    Article  CAS  Google Scholar 

  84. Zaitsev A M, Moe K S, Wang W Y. Defect transformations in nitrogen-doped CVD diamond during irradiation and annealing. Diamond and Related Materials, 2018, 88: 237–255

    Article  CAS  Google Scholar 

  85. Vins V G, Yelisseyev A P, Smovzh D V, et al. Optical properties of CVD single crystal diamonds before and after different post-growth treatments. Diamond and Related Materials, 2018, 86: 79–86

    Article  CAS  Google Scholar 

  86. Lim H, Park S, Cheong H, et al. Discrimination between natural and HPHT-treated type IIa diamonds using photoluminescence spectroscopy. Diamond and Related Materials, 2010, 19(10): 1254–1258

    Article  CAS  Google Scholar 

  87. Polyakov S N, Denisov V N, Kuzmin N V, et al. Characterization of top-quality type IIa synthetic diamonds for new X-ray optics. Diamond and Related Materials, 2011, 20(5–6): 726–728

    Article  CAS  Google Scholar 

  88. Han Q G, Li M Z, Jia X P, et al. Modeling of effective design of high pressure anvils used for large scale commercial production of gem quality large single crystal diamond. Diamond and Related Materials, 2011, 20(7): 969–973

    Article  CAS  Google Scholar 

  89. Wang Z K, Ma H A, Fang S, et al. Synthesis and characterization of gem diamond single crystals in Fe-C system under high temperature and high pressure. Journal of Crystal Growth, 2020, 531: 125371

    Article  CAS  Google Scholar 

  90. Stoupin S. Novel diamond X-ray crystal optics for synchrotrons and X-ray free-electron lasers. Diamond and Related Materials, 2014, 49: 39–47

    Article  CAS  Google Scholar 

  91. De Sio A, Bocci A, Pace E, et al. Diamond solid state ionization chambers for x-ray absorption spectroscopy applications. Applied Physics Letters, 2008, 93(8): 083503

    Article  Google Scholar 

  92. Song Y, Peng B D, Song G Z, et al. Investigating non-equilibrium carrier lifetimes in nitrogen-doped and boron-doped single crystal HPHT diamonds with an optical method. Applied Physics Letters, 2018, 112(2): 022103

    Article  Google Scholar 

  93. Tallaire A, Mille V, Brinza O, et al. Thick CVD diamond films grown on high-quality type IIa HPHT diamond substrates from new diamond technology. Diamond and Related Materials, 2017, 77: 146–152

    Article  CAS  Google Scholar 

  94. Achard J, Silva F, Brinza O, et al. Identification of etch-pit crystallographic faces induced on diamond surface by H2/O2 etching plasma treatment. Physica Status Solidi A: Applications and Materials Science, 2009, 206(9): 1949–1954

    Article  CAS  Google Scholar 

  95. Silva F, Achard J, Brinza O, et al. High quality, large surface area, homo epitaxial MPACVD diamond growth. Diamond and Related Materials, 2009, 18(5–8): 683–697

    Article  CAS  Google Scholar 

  96. Tallaire A, Achard J, Brinza O, et al. Growth strategy for controlling dislocation densities and crystal morphologies of single crystal diamond by using pyramidal-shape substrates. Diamond and Related Materials, 2013, 33: 71–77

    Article  CAS  Google Scholar 

  97. Vikharev A L, Lobaev M A, Gorbachev A M, et al. Investigation of homoepitaxial growth by microwave plasma CVD providing high growth rate and high quality of diamond simultaneously. Materials Today: Communications, 2020, 22: 100816

    CAS  Google Scholar 

  98. Lab-grown and Mined Sectors. “Call a truce”. International Diamond Exchange (IDEX), 2020

  99. Zhao Z S, Xu B, Tian Y J. Recent advances in superhard materials. Annual Review of Materials Research, 2016, 46(1): 383–406

    Article  CAS  Google Scholar 

  100. Blank V, Popov M, Pivovarov G, et al. Ultrahard and superhard phases of fullerite C60: comparison with diamond on hardness and wear. Diamond and Related Materials, 1998, 7(2–5): 427–431

    Article  CAS  Google Scholar 

  101. Zhang L J, Wang Y C, Lv J, et al. Materials discovery at high pressures. Nature Reviews Materials, 2017, 2(4): 17005

    Article  CAS  Google Scholar 

  102. Liang Q, Yan C S, Meng Y F, et al. Recent advances in high-growth rate single-crystal CVD diamond. Diamond and Related Materials, 2009, 18(5–8): 698–703

    Article  CAS  Google Scholar 

  103. Scott D E. The history of and impact of synthetic diamond cutters and diamond enhanced inserts on the oil and gas industry. Industrial Diamond Review, 2006, 66(1): 48–55

    Google Scholar 

  104. Ge Y F, Xu J H, Yang H. Diamond tools wear and their applicability when ultra-precision turning of SiCp/2009Al matrix composite. Wear, 2010, 269(11–12): 699–708

    CAS  Google Scholar 

  105. Ding X, Jarfors A E W, Lim G C, et al. A study of the cutting performance of poly-crystalline oxygen free copper with single crystalline diamond micro-tools. Precision Engineering, 2012, 36(1): 141–152

    Article  Google Scholar 

  106. Kawasegi N, Kawashima T, Morita N, et al. Effect of texture shape on machining performance of textured diamond cutting tool. Precision Engineering, 2019, 60: 21–27

    Article  Google Scholar 

  107. Chrenko R M, Strong H M. Physical Properties of Diamond Report No. 75CRDO89. Schenectady, NY: General Electric, 1975

    Google Scholar 

  108. Niu H Y, Niu S W, Oganov A R. Simple and accurate model of fracture toughness of solids. Journal of Applied Physics, 2019, 125(6): 065105

    Article  Google Scholar 

  109. Hess P. The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal. Journal of Applied Physics, 2012, 111(5): 051101

    Article  Google Scholar 

  110. Yan C S, Mao H K, Li W, et al. Ultrahard diamond single crystals from chemical vapor deposition. Physica Status Solidi A: Applied Research, 2004, 201(4): R25–R27

    Article  CAS  Google Scholar 

  111. Zong W J, Sun T, Li D, et al. Design criterion for crystal orientation of diamond cutting tool. Diamond and Related Materials, 2009, 18(4): 642–650

    Article  CAS  Google Scholar 

  112. Sumiya H. Superhard diamond indenter prepared from high-purity synthetic diamond crystal. Review of Scientific Instruments, 2005, 76(2): 026112

    Article  Google Scholar 

  113. Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature, 2003, 421(6923): 599–600

    Article  CAS  Google Scholar 

  114. G’Hern M E, McHargue C J, Clausing R E, et al. Extended Abstracts No. 19, Technology Update on Diamond Films. Pittsburg, USA: Materials Research Society, 1989

    Google Scholar 

  115. Novikov N V, Dub S N. Hardness and fracture toughness of CVD diamond film. Diamond and Related Materials, 1996, 5(9): 1026–1030

    Article  CAS  Google Scholar 

  116. Liang Y F, Zheng Y T, Wei J J, et al. Effect of grain boundary on polycrystalline diamond polishing by high-speed dynamic friction. Diamond and Related Materials, 2021, 117: 108461

    Article  CAS  Google Scholar 

  117. Zheng Y T, Ye H T, Thornton R, et al. Subsurface cleavage of diamond after high-speed three-dimensional dynamic friction polishing. Diamond and Related Materials, 2020, 101: 107600

    Article  CAS  Google Scholar 

  118. Zhao G L, Li Z Y, Hu M S, et al. Fabrication and performance of CVD diamond cutting tool in micro milling of oxygen-free copper. Diamond and Related Materials, 2019, 100: 107589

    Article  CAS  Google Scholar 

  119. Pickles C S J. The fracture stress of chemical vapour deposited diamond. Diamond and Related Materials, 2002, 11(12): 1913–1922

    Article  CAS  Google Scholar 

  120. CVD Diamond Handbook. Element Six, De Beers Group, 2020

  121. An K, Chen L X, Yan X B, et al. Fracture behavior of diamond films deposited by DC arc plasma jet CVD. Ceramics International, 2018, 44(11): 13402–13408

    Article  CAS  Google Scholar 

  122. Paci J T, Belytschko T, Schatz G C. Mechanical properties of ultrananocrystalline diamond prepared in a nitrogen-rich plasma: a theoretical study. Physical Review B, 2006, 74(18): 184112

    Article  Google Scholar 

  123. Yang J X, Zhang H D, Li C M, et al. Effects of nitrogen addition on morphology and mechanical property of DC arc plasma jet CVD diamond films. Diamond and Related Materials, 2004, 13(1): 139–144

    Article  CAS  Google Scholar 

  124. Denkena B, Grove T, Gartzke T. Wear mechanisms of CVD diamond tools for patterning vitrified corundum grinding wheels. Wear, 2019, 436–437: 203007

    Article  Google Scholar 

  125. Qian J, McMurray C E, Mukhopadhyay D K, et al. Polycrystal-line diamond cutters sintered with magnesium carbonate in cubic anvil press. International Journal of Refractory Metals & Hard Materials, 2012, 31: 71–75

    Article  CAS  Google Scholar 

  126. Li G X, Rahim M Z, Pan W C, et al. The manufacturing and the application of polycrystalline diamond tools — a comprehensive review. Journal of Manufacturing Processes, 2020, 56: 400–416

    Article  Google Scholar 

  127. Hu M, Ming W W, An Q L, et al. Experimental study on milling performance of 2D C/SiC composites using polycrystalline diamond tools. Ceramics International, 2019, 45(8): 10581–10588

    Article  CAS  Google Scholar 

  128. Erasmus R M, Comins J D, Mofokeng V, et al. Application of Raman spectroscopy to determine stress in polycrystalline diamond tools as a function of tool geometry and temperature. Diamond and Related Materials, 2011, 20(7): 907–911

    Article  CAS  Google Scholar 

  129. Belmonte M, Ferro P, Fernandes A J S, et al. Wear resistant CVD diamond tools for turning of sintered hardmetals. Diamond and Related Materials, 2003, 12(3–7): 738–743

    Article  CAS  Google Scholar 

  130. Almeida F A, Fernandes A J S, Oliveira F J, et al. Semiorthogonal turning of hard metal with CVD diamond and PCD inserts at different cutting angles. Vacuum, 2009, 83(10): 1218–1223

    Article  CAS  Google Scholar 

  131. Guo B, Wu M, Zhao Q, et al. Improvement of precision grinding performance of CVD diamond wheels by micro-structured surfaces. Ceramics International, 2018, 44(14): 17333–17339

    Article  CAS  Google Scholar 

  132. Sumiya H, Ishida Y. Real hardness of high-purity ultra-fine nanopolycrystalline diamond synthesized by direct conversion sintering under HPHT. Diamond and Related Materials, 2019, 100: 107560

    Article  CAS  Google Scholar 

  133. Huang Q, Yu D L, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature, 2014, 510(7504): 250–253

    Article  CAS  Google Scholar 

  134. Regan B, Aghajamali A, Froech J, et al. Plastic deformation of single-crystal diamond nanopillars. Advanced Materials, 2020, 32(9): 1906458

    Article  CAS  Google Scholar 

  135. Nie A M, Bu Y Q, Huang J Q, et al. Direct observation of room-temperature dislocation plasticity in diamond. Matter, 2020, 2(5): 1222–1232

    Article  Google Scholar 

  136. Liao M Y. Progress in semiconductor diamond photodetectors and MEMS sensors. Functional Diamond, 2021, 1(1): 29–46

    Article  Google Scholar 

  137. Sepulveda N, Lu J, Aslam D M, et al. High-performance polycrystalline diamond micro- and nanoresonators. Journal of Microelectromechanical Systems, 2008, 17(2): 473–482

    Article  CAS  Google Scholar 

  138. Castelletto S, Rosa L, Blackledge J, et al. Advances in diamond nanofabrication for ultrasensitive devices. Microsystems & Nanoengineering, 2017, 3(1): 17061

    Article  Google Scholar 

  139. Tao Y, Boss J M, Moores B A, et al. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nature Communications, 2014, 5(1): 3638

    Article  CAS  Google Scholar 

  140. Palko J W, Lee H, Zhang C, et al. Extreme two-phase cooling from laser-etched diamond and conformal, template-fabricated microporous copper. Advanced Functional Materials, 2017, 27(45): 1703265

    Article  Google Scholar 

  141. Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. Advanced Electronic Materials, 2018, 4(1): 1600501

    Article  Google Scholar 

  142. Kasu M, Ueda K, Ye H, et al. High RF output power for H-terminated diamond FETs. Diamond and Related Materials, 2006, 15(4–8): 783–786

    Article  CAS  Google Scholar 

  143. Pomeroya J, Bernardonia M, Saruaa A, et al. Achieving the best thermal performance for GaN-on-diamond. IEEE Compound Semiconductor Integrated Circuit Symposium, 2013

  144. Qi Z N, Zheng Y T, Wei J J, et al. Surface treatment of an applied novel all-diamond microchannel heat sink for heat transfer performance enhancement. Applied Thermal Engineering, 2020, 177:115489

    Article  CAS  Google Scholar 

  145. Morelli D T, Beetz C P, Perry T A. Thermal conductivity of synthetic diamond films. Journal of Applied Physics, 1988, 64(6): 3063–3066

    Article  CAS  Google Scholar 

  146. Wilks J, Wilks E. Properties and Applications of Diamond. Oxford, UK: Butterworth-Heinemann, 1991

    Google Scholar 

  147. Sood A, Cho J, Hobart K D, et al. Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond. Journal of Applied Physics, 2016, 119(17): 175103

    Article  Google Scholar 

  148. Anaya J, Bai T, Wang Y, et al. Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond. Acta Materialia, 2017, 139: 215–225

    Article  CAS  Google Scholar 

  149. Faili F, Huang W, Calvo J, et al. Disturbed and scattered: the path of thermal conduction through diamond lattice. IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2016, 7: 7517675

    Google Scholar 

  150. Slack G A. Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. Journal of Applied Physics, 1964, 35(12): 3460–3466

    Article  CAS  Google Scholar 

  151. Yue D H, Gao Y, Zhao L, et al. In situ thermal conductivity measurement in diamond anvil cell. Japanese Journal of Applied Physics, 2019, 58(4): 040906

    Article  CAS  Google Scholar 

  152. Katcho N A, Carrete J, Li W, et al. Effect of nitrogen and vacancy defects on the thermal conductivity of diamond: an ab initio Green’s function approach. Physical Review B, 2014, 90(9): 094117

    Article  CAS  Google Scholar 

  153. Inyushkin A V, Taldenkov A N, Ralchenko V G, et al. Thermal conductivity of high purity synthetic single crystal diamonds. Physical Review B, 2018, 97(14): 144305

    Article  CAS  Google Scholar 

  154. Sukhadolau A V, Ivakin E V, Ralchenko V G, et al. Thermal conductivity of CVD diamond at elevated temperatures. Diamond and Related Materials, 2005, 14(3–7): 589–593

    Article  CAS  Google Scholar 

  155. Worner E, Pleuler E, Wild C, et al. Thermal and optical properties of high purity CVD diamond discs doped with boron and nitrogen. Diamond and Related Materials, 2003, 12(3–7): 744–748

    Article  CAS  Google Scholar 

  156. Verhoeven H, Flöter A, Reiß H, et al. Influence of the microstructure on the thermal properties of thin polycrystalline diamond films. Applied Physics Letters, 1997, 71(10): 1329–1331

    Article  CAS  Google Scholar 

  157. Morelli D T, Hartnett T M, Robinson C J. Phonon-defect scattering in high thermal conductivity diamond films. Applied Physics Letters, 1991, 59(17): 2112–2114

    Article  CAS  Google Scholar 

  158. Faili F, Palmer N, Oh S, et al. Physical and thermal characterization of CVD diamond: a bottoms-up review. IEEE ITHERM Conference, 2017, 9: 1–7

    Google Scholar 

  159. Graebner J E, Jin S, Kammlott G W, et al. Large anisotropic thermal conductivity in synthetic diamond films. Nature, 1992, 359(6394): 401–403

    Article  CAS  Google Scholar 

  160. Simon R B, Anaya J, Faili F, et al. Effect of grain size of polycrystalline diamond on its heat spreading properties. Applied Physics Express, 2016, 9(6): 061302

    Article  Google Scholar 

  161. Sood A, Cheaito R, Bai T, et al. Direct visualization of thermal conductivity suppression due to enhanced phonon scattering near individual grain boundaries. Nano Letters, 2018, 18(6): 3466–3472

    Article  CAS  Google Scholar 

  162. Twitchen D J, Pickles C S J, Coe S E, et al. Thermal conductivity measurements on CVD diamond. Diamond and Related Materials, 2001, 10(3–7): 731–735

    Article  CAS  Google Scholar 

  163. Khomich A V, Ralchenko V G, Vlasov A V, et al. Effect of high temperature annealing on optical and thermal properties of CVD diamond. Diamond and Related Materials, 2001, 10(3–7): 546–551

    Article  CAS  Google Scholar 

  164. Friel I, Geoghegan S L, Twitchen D J, et al. Development of high quality single crystal diamond for novel laser applications. Proceedings of SPIE, 2010, 7838: 783819

    Article  Google Scholar 

  165. Huszka G, Malpiece N, Naamoun M, et al. Single crystal diamond gain mirrors for high performance vertical external cavity surface emitting lasers. Diamond and Related Materials, 2020, 104: 107744

    Article  CAS  Google Scholar 

  166. Friel I. Optical quality diamond grown by chemical vapor deposition. In: Mildren R, Rabeau J, eds. Optical Engineering of Diamond. Wiley-VCH, 2013

  167. Dodson J M, Brandon J R, Dhillon H K, et al. Single crystal and polycrystalline CVD diamond for demanding optical applications. Proceedings of the Society for Photo-Instrumentation Engineers, 2011, 8016: 80160L

    Google Scholar 

  168. Bennett A M, Wickham B J, Dhillon H K, et al. Development of high-purity optical grade single-crystal CVD diamond for intracavity cooling. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 8959: 89590R

    Google Scholar 

  169. Liu H Y, Reilly S, Herrnsdorf J, et al. Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers. Diamond and Related Materials, 2016, 65: 37–41

    Article  CAS  Google Scholar 

  170. Parrotta D C, Kemp A J, Dawson M D, et al. Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1400108

    Article  Google Scholar 

  171. McKay A, Kitzler O, Mildren R P. Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser. Laser & Photonics Reviews, 2014, 8(3): L37–L41

    Article  CAS  Google Scholar 

  172. Desjardins K, Pomorski M, Morse J. Ultra-thin optical grade scCVD diamond as X-ray beam position monitor. Journal of Synchrotron Radiation, 2014, 21(6): 1217–1223

    Article  CAS  Google Scholar 

  173. Lang A R, Makepeace A P W, Moore M, et al. On the variation of X-ray diffraction contrast with wavelength: a study with synchrotron radiation. Journal of Applied Crystallography, 1983, 16(1): 113–125

    Article  CAS  Google Scholar 

  174. Bennett A. Diamond — a laser engineer’s best friend. Optik & Photonik, 2014, 9(4): 49–52

    Article  CAS  Google Scholar 

  175. Pickles C S J, Madgwick T D, Sussmann R S, et al. Optical performance of chemically vapour-deposited diamond at infrared wavelengths. Diamond and Related Materials, 2000, 9(3–6): 916–920

    Article  CAS  Google Scholar 

  176. Woerner E, Wild C, Mueller-Sebert W, et al. CVD-diamond optical lenses. Diamond and Related Materials, 2001, 10(3–7): 557–560

    Article  CAS  Google Scholar 

  177. Yang J X, Duan X F, Lu F X, et al. The influence of dark feature on optical and thermal property of DC Arc Plasma Jet CVD diamond films. Diamond and Related Materials, 2005, 14(10): 1583–1587

    Article  CAS  Google Scholar 

  178. Meykens K, Haenen K, Nesla’dek M, et al. Measurement and mapping of very low optical absorption of CVD diamond. Diamond and Related Materials, 2000, 9(3–6): 1021–1025

    Article  CAS  Google Scholar 

  179. Karlsson M, Nikolajeff F. Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region. Optics Express, 2003, 11(5): 502–507

    Article  CAS  Google Scholar 

  180. Yurov V Y, Bushuev E V, Popovich A F, et al. Near-infrared refractive index of synthetic single crystal and polycrystalline diamonds at high temperatures. Journal of Applied Physics, 2017, 122(24): 243106

    Article  Google Scholar 

  181. Yamamoto K, Iwasaki H, Tsuji S, et al. Terahertz time-domain spectroscopy of CVD diamond. IEEE 37th International Conference on Infrared Millimeter and Terahertz Waves, 2012, 9: 6380244

    Google Scholar 

  182. Zheng Y T, Zhang R, Chen X D, et al. Doomed couple of diamond with terahertz frequency: hyperfine quality discrimination and complex dielectric responses of diamond in the terahertz waveband. ACS Applied Electronic Materials, 2020, 2(5): 1459–1469

    Article  CAS  Google Scholar 

  183. Garin B M, Parshin V V, Myasnikova S E, et al. Nature of millimeter wave losses in low loss CVD diamonds. Diamond and Related Materials, 2003, 12(10–11): 1755–1759

    Article  CAS  Google Scholar 

  184. Yamada H, Meier A, Mazzocchi F, et al. Dielectric properties of single crystalline diamond wafers with large area at microwave wavelengths. Diamond and Related Materials, 2015, 58: 1–4

    Article  CAS  Google Scholar 

  185. Liu Y, Ding M, Su J, et al. Dielectric properties of nitrogen-doped polycrystalline diamond films in Ka band. Diamond and Related Materials, 2017, 76: 68–73

    Article  CAS  Google Scholar 

  186. Lin C N, Lu Y J, Yang X, et al. Diamond-based all-carbon photodetectors for solar-blind imaging. Advanced Optical Materials, 2018, 6(15): 1800068

    Article  Google Scholar 

  187. Lu Y J, Lin C N, Shan C X. Optoelectronic diamond: growth, properties, and photodetection applications. Advanced Optical Materials, 2018, 6(20): 1800359

    Article  Google Scholar 

  188. Mamin R F, Inushima T. Conductivity in boron-doped diamond. Physical Review B, 2001, 63(3): 033201

    Article  Google Scholar 

  189. Geis M W, Wade T C, Wuorio C H, et al. Progress toward diamond power field-effect transistors. Physica Status Solidi A: Applications and Materials Science, 2018, 215(22): 1800681

    Article  Google Scholar 

  190. Bogdanov S A, Gorbachev A M, Radishev D B, et al. Nanometric diamond delta doping with boron. Physica Status Solidi: Rapid Research Letters, 2017, 1: 1600329

    Google Scholar 

  191. Kawarada H. Hydrogen-terminated diamond surfaces and interfaces. Surface Science Reports, 1996, 26(7): 205–259

    Article  CAS  Google Scholar 

  192. Pakes C I, Garrido J A, Kawarada H. Diamond surface conductivity: properties, devices, and sensors. MRS Bulletin, 2014, 39(6): 542–548

    Article  CAS  Google Scholar 

  193. Prins J F. n-Type semiconducting diamond by means of oxygen-ion implantation. Physical Review B, 2000, 61(11): 7191–7194

    Article  CAS  Google Scholar 

  194. Stenger I, Pinault-Thaury M A, Kociniewski T, et al. Impurity-to-band activation energy in phosphorus doped diamond. Journal of Applied Physics, 2013, 114(7): 073711

    Article  Google Scholar 

  195. Pinault-Thaury M A, Stenger I, Gillet R, et al. Attractive electron mobility in (1 1 3) n-type phosphorus-doped homoepitaxial diamond. Carbon, 2021, 175: 254–258

    Article  CAS  Google Scholar 

  196. Goss J P, Briddon P R, Jones R, et al. Donor and acceptor states in diamond. Diamond and Related Materials, 2004, 13(4–8): 684–690

    Article  CAS  Google Scholar 

  197. Sakaguchi I, Gamo M N, Kikuchi Y, et al. Sulfur: a donor dopant for n-type diamond semiconductors. Physical Review B, 1999, 60(4): R2139–R2141

    Article  CAS  Google Scholar 

  198. Tang L, Yue R, Wang Y. N-type B—S co-doping and S doping in diamond from first principles. Carbon, 2018, 130: 458–465

    Article  CAS  Google Scholar 

  199. Lombardi E B, Mainwood A, Osuch K. Interaction of hydrogen with boron, phosphorus, and sulfur in diamond. Physical Review B, 2004, 70(20): 205201

    Article  Google Scholar 

  200. Goss J P, Briddon P R, Shaw M J. Density functional simulations of silicon-containing point defects in diamond. Physical Review B, 2007, 76(7): 075204

    Article  Google Scholar 

  201. Chernyshev V A, Meijer J, Grambole D, et al. n-Type diamond produced by MeV lithium implantation in channeling direction. Diamond and Related Materials, 2008, 17(11): 1933–1935

    Article  CAS  Google Scholar 

  202. Lombardi E B, Mainwood A, Osuch K. Ab initio study of lithium and sodium in diamond. Physical Review B, 2007, 76(15): 155203

    Article  Google Scholar 

  203. Sque S J, Jones R, Goss J P, et al. Shallow donors in diamond: chalcogens, pnictogens, and their hydrogen complexes. Physical Review Letters, 2004, 92(1): 017402

    Article  CAS  Google Scholar 

  204. Masante C, Pernot J, Marechal A, et al. High temperature operation of a monolithic bidirectional diamond switch. Diamond and Related Materials, 2021, 111: 108185

    Article  CAS  Google Scholar 

  205. Lloret F, Eon D, Bustarret E, et al. Selectively boron doped homoepitaxial diamond growth for power device applications. Applied Physics Letters, 2021, 118(2): 023504

    Article  CAS  Google Scholar 

  206. Achard J, Tallaire A. Diamond wafer technologies for semiconductor device applications. In: Koizumi S, Umezawa H, Pernot J, et al., eds. Power Electronics Device Applications of Diamond Semiconductors. Cambridge, UK: Woodhead Publishing, 2018, 1–97

    Google Scholar 

  207. Pinault-Thaury M A, Temgoua S, Gillet R, et al. Phosphorus-doped (1 1 3) CVD diamond: A breakthrough towards bipolar diamond devices. Applied Physics Letters, 2019, 114(11): 112106

    Article  Google Scholar 

  208. Khramtsov I A, Fedyanin D Y. Superinjection in diamond p-i-n diodes: bright single-photon electroluminescence of color centers beyond the doping limit. Physical Review Applied, 2019, 12(2): 024013

    Article  CAS  Google Scholar 

  209. Udvarhelyi P, Shkolnikov V O, Gali A, et al. Spin-strain interaction in nitrogen-vacancy centers in diamond. Physical Review B, 2018, 98(7): 075201

    Article  CAS  Google Scholar 

  210. Pernot J, Volpe P N, Omnès F, et al. Hall hole mobility in boron-doped homoepitaxial diamond. Physical Review B, 2010, 81(20): 205203

    Article  Google Scholar 

  211. Yamasaki S, Gheeraert E, Koide Y. Doping and interface of homoepitaxial diamond for electronic applications. MRS Bulletin, 2014, 39(6): 499–503

    Article  CAS  Google Scholar 

  212. Jena D, Mishra U K. Effect of scattering by strain fields surrounding edge dislocations on electron transport in two-dimensional electron gases. Applied Physics Letters, 2002, 80(1): 64–66

    Article  CAS  Google Scholar 

  213. Klein O, Mayr M, Fischer M, et al. Propagation and annihilation of threading dislocations during off-axis growth of heteroepitaxial diamond films. Diamond and Related Materials, 2016, 65: 53–58

    Article  CAS  Google Scholar 

  214. Schreck M, Ščajev P, Träger M, et al. Charge carrier trapping by dislocations in single crystal diamond. Journal of Applied Physics, 2020, 127(12): 125102

    Article  CAS  Google Scholar 

  215. Nebel C E, Munz J, Stutzmann M, et al. Electronic properties of CVD and synthetic diamond. Physical Review B, 1997, 55(15): 9786–9791

    Article  CAS  Google Scholar 

  216. Secroun A, Brinza O, Tardieu A, et al. Dislocation imaging for electronics application crystal selection. Physica Status Solidi A: Applications and Materials Science, 2007, 204(12): 4298–4304

    Article  CAS  Google Scholar 

  217. Reznik A, Uzan-Saguy C, Kalish R. Effects of point defects on the electrical properties of doped diamond. Diamond and Related Materials, 2000, 9(3–6): 1051–1056

    Article  CAS  Google Scholar 

  218. Kalish R, Uzan-Saguy C, Philosoph B, et al. Loss of electrical conductivity in boron-doped diamond due to ion-induced damage. Applied Physics Letters, 1997, 70(8): 999–1001

    Article  CAS  Google Scholar 

  219. Lohstroh A, Sellin P J, Wang S G, et al. Effect of dislocations on charge carrier mobility-lifetime product in synthetic single crystal diamond. Applied Physics Letters, 2007, 90(10): 102111

    Article  Google Scholar 

  220. Umezawa H. Recent advances in diamond power semiconductor devices. Materials Science in Semiconductor Processing, 2018, 78: 147–156

    Article  CAS  Google Scholar 

  221. Umezawa H, Saito T, Tokuda N, et al. Leakage current analysis of diamond Schottky barrier diode. Applied Physics Letters, 2007, 90(7): 073506

    Article  Google Scholar 

  222. Kasu M, Kubovic M, Aleksov A, et al. Influence of epitaxy on the surface conduction of diamond film. Diamond and Related Materials, 2004, 13(2): 226–232

    Article  CAS  Google Scholar 

  223. Ristein J, Riedel M, Maier F, et al. Surface conductivity of diamond as a function of nitrogen doping. Physica Status Solidi A: Applied Research, 2001, 186(2): 249–256

    Article  CAS  Google Scholar 

  224. Pan L S, Kania D R, Han S, et al. Electrical transport-properties of undoped CVD diamond films. Science, 1992, 255(5046): 830–833

    Article  CAS  Google Scholar 

  225. Mokuno Y, Kato Y, Tsubouchi N, et al. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process. Applied Physics Letters, 2014, 104(25): 252109

    Article  Google Scholar 

  226. Boussadi A, Tallaire A, Kasu M, et al. Reduction of dislocation densities in single crystal CVD diamond by confinement in the lateral sector. Diamond and Related Materials, 2018, 83: 162–169

    Article  CAS  Google Scholar 

  227. Martineau P M, Gaukroger M P, Guy K B, et al. High crystalline quality single crystal chemical vapour deposition diamond. Journal of Physics: Condensed Matter, 2009, 21(36): 364205

    CAS  Google Scholar 

  228. Tallaire A, Brinza O, Mille V, et al. Reduction of dislocations in single crystal diamond by lateral growth over a macroscopic hole. Advanced Materials, 2017, 29(16): 1604823

    Article  Google Scholar 

  229. Markham M L, Dodson J M, Scarsbrook G A, et al. CVD diamond for spintronics. Diamond and Related Materials, 2011, 20(2): 134–139

    Article  CAS  Google Scholar 

  230. Balducci A, Marinelli M, Milani E, et al. Distribution of electrically active defects in chemical vapor deposition diamond: model and measurement. Applied Physics Letters, 2005, 86(2): 022108

    Article  Google Scholar 

  231. Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Scientific Reports, 2017, 7(1): 44462

    Article  CAS  Google Scholar 

  232. Yamada H, Chayahara A, Mokuno Y, et al. Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond. Diamond and Related Materials, 2013, 33: 27–31

    Article  CAS  Google Scholar 

  233. Naamoun M, Tallaire A, Doppelt P, et al. Reduction of dislocation densities in single crystal CVD diamond by using self-assembled metallic masks. Diamond and Related Materials, 2015, 58: 62–68

    Article  CAS  Google Scholar 

  234. Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diamond and Related Materials, 2019, 94: 92–100

    Article  CAS  Google Scholar 

  235. Aida H, Ikejiri K, Kim S, et al. Overgrowth of diamond layers on diamond microneedles: new concept for freestanding diamond substrate by heteroepitaxy. Diamond and Related Materials, 2016, 66: 77–82

    Article  CAS  Google Scholar 

  236. Service R F. Diamond feats give quantum computing a solid boost. Science, 2010, 329(5992): 616–617

    Article  CAS  Google Scholar 

  237. Dong Y, Xu J Y, Zhang S C, et al. Composite-pulse enhanced room-temperature diamond magnetometry. Functional Diamond, 2021, 1(1): 125–134

    Article  Google Scholar 

  238. Orwa J O, Santori C, Fu K M C, et al. Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing. Journal of Applied Physics, 2011, 109(8): 083530

    Article  Google Scholar 

  239. Smits J, Damron J T, Kehayias P, et al. Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. Science Advances, 2019, 5(7): eaaw7895

    Article  CAS  Google Scholar 

  240. Hamlin J J, Zhou B B. Extreme diamond-based quantum sensors. Science, 2019, 366(6471): 1312–1313

    Article  CAS  Google Scholar 

  241. Bucher D B, Craik D P L A, Backlund M P, et al. Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy. Nature Protocols, 2019, 14(9): 2707–2747

    Article  CAS  Google Scholar 

  242. Sangtawesin S, Brundage T O, Atkins Z J, et al. Highly tunable formation of nitrogen-vacancy centers via ion implantation. Applied Physics Letters, 2014, 105(6): 063107

    Article  Google Scholar 

  243. Doherty M W, Manson N B, Delaney P, et al. The nitrogen-vacancy colour centre in diamond. Physics Reports, 2013, 528(1): 1–45

    Article  CAS  Google Scholar 

  244. Razinkovas L, Doherty M W, Manson N B, et al. Vibrational and vibronic structure of isolated point defects: the nitrogen-vacancy center in diamond. Physical Review B, 2021, 104(4): 045303

    Article  CAS  Google Scholar 

  245. Siyushev P, Nesladek M, Bourgeois E, et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science, 2019, 363(6428): 728–731

    Article  CAS  Google Scholar 

  246. Hensen B, Bernien H, Dre’au A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 2015, 526(7575): 682–686

    Article  CAS  Google Scholar 

  247. Shi F Z, Zhang Q, Wang P F, et al. Single-protein spin resonance spectroscopy under ambient conditions. Science, 2015, 347(6226): 1135–1138

    Article  CAS  Google Scholar 

  248. Bradley C E, Randall J, Abobeih M H, et al. A ten-qubit solidstate spin register with quantum memory up to one minute. Physical Review X, 2019, 9(3): 031045

    Article  CAS  Google Scholar 

  249. Li R, Kong F, Zhao P J, et al. Nanoscale electrometry based on a magnetic-field-resistant spin sensor. Physical Review Letters, 2020, 124(24): 247701

    Article  CAS  Google Scholar 

  250. Atatüre M, Englund D, Vamivakas N, et al. Material platforms for spin-based photonic quantum technologies. Nature Reviews: Materials, 2018, 3(5): 38–51

    Google Scholar 

  251. Bradac C, Gao W B, Forneris J, et al. Quantum nanophotonics with group IV defects in diamond. Nature Communications, 2019, 10: 5625

    Article  CAS  Google Scholar 

  252. Zaitsev A M. Vibronic spectra of impurity-related optical centers in diamond. Physical Review B, 2000, 61(19): 12909–12922

    Article  CAS  Google Scholar 

  253. Kennedy T A, Colton J S, Butler J E, et al. Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition. Applied Physics Letters, 2003, 83(20): 4190–4192

    Article  CAS  Google Scholar 

  254. Gaebel T, Domhan M, Popa I, et al. Room-temperature coherent coupling of single spins in diamond. Nature Physics, 2006, 2(6): 408–413

    Article  CAS  Google Scholar 

  255. Balasubramanian G, Neumann P, Twitchen D, et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Materials, 2009, 8(5): 383–387

    Article  CAS  Google Scholar 

  256. Dolde F, Jakobi I, Naydenov B, et al. Room-temperature entanglement between single defect spins in diamond. Nature Physics, 2013, 9(3): 139–143

    Article  CAS  Google Scholar 

  257. Aharonovich I, Greentree A D, Prawer S. Diamond photonics. Nature Photonics, 2011, 5(7): 397–405

    Article  CAS  Google Scholar 

  258. Teraji T. Ultrapure homoepitaxial diamond films grown by chemical vapor deposition for quantum device application. Semiconductors and Semimetals, 2020, 103: 37–55

    Article  CAS  Google Scholar 

  259. Achard J, Jacques V, Tallaire A. Chemical vapour deposition diamond single crystals with nitrogen-vacancy centres: a review of material synthesis and technology for quantum sensing applications. Journal of Physics D: Applied Physics, 2020, 53(31): 313001

    Article  CAS  Google Scholar 

  260. Lenzini F, Gruhler N, Walter N, et al. Diamond as a platform for integrated quantum photonics. Advanced Quantum Technologies, 2018, 1(3): 1800061

    Article  Google Scholar 

  261. Faraon A, Barclay P E, Santori C, et al. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photonics, 2011, 5(5): 301–305

    Article  CAS  Google Scholar 

  262. Hausmann B J M, Shields B J, Quan Q, et al. Coupling of NV centers to photonic crystal nanobeams in diamond. Nano Letters, 2013, 13(12): 5791–5796

    Article  CAS  Google Scholar 

  263. Riedel D, Söllner I, Shields B J, et al. Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond. Physical Review X, 2017, 7(3): 031040

    Article  Google Scholar 

  264. Hoinkis M, Weber E R, Landstrass M I, et al. Paramagnetic nitrogen in chemical vapor deposition diamond thin films. Applied Physics Letters, 1991, 59(15): 1870–1871

    Article  CAS  Google Scholar 

  265. Lühmann T, Raatz N, John R, et al. Screening and engineering of colour centres in diamond. Journal of Physics D: Applied Physics, 2018, 51(48): 483002

    Article  Google Scholar 

  266. Yamamoto T, Umeda T, Watanabe K, et al. Extending spin coherence times of diamond qubits by high-temperature annealing. Physical Review B, 2013, 88(7): 075206

    Article  Google Scholar 

  267. Lobaev M A, Gorbachev A M, Bogdanov S A, et al. Influence of CVD diamond growth conditions on nitrogen incorporation. Diamond and Related Materials, 2017, 72: 1–6

    Article  CAS  Google Scholar 

  268. Mi S, Kiss M, Graziosi T, et al. Integrated photonic devices in single crystal diamond. Journal of Physics: Photonics, 2020, 2(4): 042001

    CAS  Google Scholar 

  269. Bogdanov S A, Gorbachev A M, Radishev D B, et al. Investigation of high-density nitrogen vacancy center ensembles created in electron-irradiated and vacuum-annealed delta-doped layers. Physica Status Solidi: Rapid Research Letters, 2021, 15(2): 2000550

    CAS  Google Scholar 

  270. Stephen C J, Green B L, Lekhai Y N D, et al. Deep three-dimensional solid-state qubit arrays with long-lived spin coherence. Physical Review Applied, 2019, 12(6): 064005

    Article  CAS  Google Scholar 

  271. Achard J, Silva F, Brinza O, et al. Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals. Diamond and Related Materials, 2007, 16(4–7): 685–689

    Article  CAS  Google Scholar 

  272. Kalish R. Ion implantation in diamond for quantum information processing (QIP): doping and damaging. In: Prawer S, Aharonovich I, eds. Quantum Information Processing with Diamond: Principles and Applications. 1st ed. Cambridge, UK: Woodhead Publishing, 2014, 36–67

    Chapter  Google Scholar 

  273. Rabeau J R, Reichart P, Tamanyan G, et al. Implantation of labeled single nitrogen vacancy centers in diamond using 15N. Applied Physics Letters, 2006, 88(2): 023113

    Article  Google Scholar 

  274. Meijer J, Burchard B, Domhan M, et al. Generation of single color centers by focused nitrogen implantation. Applied Physics Letters, 2005, 87(26): 261909

    Article  Google Scholar 

  275. Lühmann T, John R, Wunderlich R, et al. Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond. Nature Communications, 2019, 10(1): 4956

    Article  Google Scholar 

  276. de Oliveira F F, Antonov D, Wang Y, et al. Tailoring spin defects in diamond by lattice charging. Nature Communications, 2017, 8: 15409

    Article  Google Scholar 

  277. Osterkamp C, Scharpf J, Pezzagna S, et al. Increasing the creation yield of shallow single defects in diamond by surface plasma treatment. Applied Physics Letters, 2013, 103(19): 193118

    Article  Google Scholar 

  278. Reichart P, Datzmann G, Hauptner A, et al. Three-dimensional hydrogen microscopy in diamond. Science, 2004, 306(5701): 1537–1540

    Article  CAS  Google Scholar 

  279. Czelej K, Zemla M R, Spiewak P, et al. Quantum behavior of hydrogen-vacancy complexes in diamond. Physical Review B, 2018, 98(23): 235111

    Article  CAS  Google Scholar 

  280. Herbschleb E D, Kato H, Maruyama Y, et al. Ultra-long coherence times amongst room-temperature solid-state spins. Nature Communications, 2019, 10(1): 3766

    Article  CAS  Google Scholar 

  281. Dreau A, Maze J R, Lesik M, et al. High-resolution spectroscopy of single NV defects coupled with nearby 13C nuclear spins in diamond. Physical Review B, 2012, 85(13): 134107

    Article  Google Scholar 

  282. Mizuochi N, Neumann P, Rempp F, et al. Coherence of single spins coupled to a nuclear spin bath of varying density. Physical Review B, 2009, 80(4): 041201

    Article  Google Scholar 

  283. Zheng Y T, Li C M, Liu J L, et al. Diamond with nitrogen: states, control, and applications. Functional Diamond, 2021, 1(1): 63–82

    Article  Google Scholar 

  284. Markham M, Twitchen D. The diamond quantum revolution. Physics World, 2020, 33(4): 39–43

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFE0133200), the European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme (Grant No. 734578), the Post-doctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (Grant No. 2021BH006), the National Natural Science Foundation of China (Grant No. 52172037), the Beijing Municipal Natural Science Foundation (Grant Nos. 2212036 and 4192038), the Fundamental Research Funds for the Central Universities (FRF-MP-20-49Z), and the Science and Technology Innovation Special Project of Foshan Government (Grant Nos. BK20BE021 and BK21BE004). Special thanks to the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515110631) and the national high-level-university sponsored graduate program of China Scholarship Council (CSC No. 201806460089), USTB-Monte Biance Joint R&D Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengming Li or Jinlong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Li, C., Liu, J. et al. Chemical vapor deposited diamond with versatile grades: from gemstone to quantum electronics. Front. Mater. Sci. 16, 220590 (2022). https://doi.org/10.1007/s11706-022-0590-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0590-z

Keywords

Navigation