Skip to main content
Log in

Immobilization of laccase on organic-inorganic nanocomposites and its application in the removal of phenolic pollutants

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Polydopamine-functionalized nanosilica was synthesized using an inexpensive and easily obtainable raw material, mild reaction conditions, and simple operation. Subsequently, a flexible spacer arm was introduced by using dialdehyde starch as a cross-linking agent to bind with laccase. A high loading amount (77.8 mg·g−1) and activity retention (75.5%) could be achieved under the optimum immobilization conditions. Thermodynamic parameters showed that the immobilized laccase had a lower thermal deactivation rate constant and longer half-life. The enhancement of thermodynamic parameters indicated that the immobilized laccase had better thermal stability than free laccase. The residual activity of immobilized laccase remained at about 50.0% after 30 days, which was 4.0 times that of free laccase. Immobilized laccase demonstrated excellent removal of phenolic pollutants (2,4-dichlorophenol, bisphenol A, phenol, and 4-chlorophenol) and perfect reusability with 70% removal efficiency retention for 2,4-dichlorophenol after seven cycles. These results suggested that immobilized laccase possessed great reusability, improved thermal stability, and excellent storage stability. Organic-inorganic nanomaterials have a good application prospect for laccase immobilization, and the immobilized laccase of this work may provide a practical application for the removal of phenolic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou W, Zhang W, Cai Y. Laccase immobilization for water purification: a comprehensive review. Chemical Engineering Journal, 2020, 403: 126272

    Article  Google Scholar 

  2. Arora P K, Bae H. Bacterial degradation of chlorophenols and their derivatives. Microbial Cell Factories, 2014, 13(1): 1–17

    Article  Google Scholar 

  3. Rostami A, Abdelrasoul A, Shokri Z, Shirvandi Z. Applications and mechanisms of free and immobilized laccase in detoxification of phenolic compounds—a review. Korean Journal of Chemical Engineering, 2022, 39(4): 821–832

    Article  CAS  Google Scholar 

  4. Fan J X, Luo J Q, Wan Y H. Aquatic micro-pollutants removal with a biocatalytic membrane prepared by metal chelating affinity membrane chromatography. Chemical Engineering Journal, 2017, 327: 1011–1020

    Article  CAS  Google Scholar 

  5. Liu Y Y, Zeng Z T, Zeng G M, Tang L, Pang Y, Li Z, Liu C, Lei X X, Wu M S, Ren P Y, Liu Z, Chen M, Xie G. Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresource Technology, 2012, 115: 21–26

    Article  CAS  PubMed  Google Scholar 

  6. Fan J X, Luo J Q, Wan Y H. Membrane chromatography for fast enzyme purification, immobilization and catalysis: a renewable biocatalytic membrane. Journal of Membrane Science, 2017, 538: 68–76

    Article  CAS  Google Scholar 

  7. Bilal M, Ashraf S S, Cui J D, Lou W Y, Franco M, Mulla S I, Iqbal H M N. Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases—a review. International Journal of Biological Macromolecules, 2021, 166: 352–373

    Article  CAS  PubMed  Google Scholar 

  8. Qiu X, Qin J, Xu M, Kang L F, Hu Y. Organic—inorganic nanocomposites fabricated via functional ionic liquid as the bridging agent for laccase immobilization and its application in 2,4-dichlorophenol removal. Colloids and Surfaces B: Biointerfaces, 2019, 179: 260–269

    Article  CAS  PubMed  Google Scholar 

  9. Sheldon R A, van Pelt S. Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews, 2013, 42(15): 6223–6235

    Article  CAS  PubMed  Google Scholar 

  10. Dicosimo R, Mcauliffe J, Poulose A J, Bohlmann G. Industrial use of immobilized enzymes. Chemical Society Reviews, 2013, 42(15): 6437–6474

    Article  CAS  PubMed  Google Scholar 

  11. Zhao J X, Ma M M, Yan X H, Zhang G H, Xia J H, Zeng Z L, Yu P, Deng Q, Gong D M. Green synthesis of polydopamine functionalized magnetic mesoporous biochar for lipase immobilization and its application in interesterification for novel structured lipids production. Food Chemistry, 2022, 379: 132148

    Article  CAS  PubMed  Google Scholar 

  12. Zhong L, Feng Y X, Wang G Y, Wang Z Y, Bilal M, Lv H X, Jia S R, Cui J D. Production and use of immobilized lipases in/on nanomaterials: a review from the waste to biodiesel production. International Journal of Biological Macromolecules, 2020, 152: 207–222

    Article  CAS  PubMed  Google Scholar 

  13. Jeelani P G, Mulay P, Venkat R, Ramalingam C. Multifaceted application of silica nanoparticles: a review. Silicon, 2020, 12(6): 1337–1354

    Article  CAS  Google Scholar 

  14. Silvestri B, Vitiello G, Luciani G, Calcagno V, Costantini A, Gallo M, Parisi S, Paladino S, Iacomino M, D’Errico G, Caso M F, Pezzella A, d’Ischia M. Probing the eumelanin-silica interface in chemically engineered bulk hybrid nanoparticles for targeted subcellular antioxidant protection. ACS Applied Materials & Interfaces, 2017, 9(43): 37615–37622

    Article  CAS  Google Scholar 

  15. Ni Y, Lv Z X, Wang Z, Kang S Y, He D W, Liu R J. Immobilization and evaluation of penicillin G acylase on hydroxy and aldehyde functionalized magnetic α-Fe2O3/Fe3O4 heterostructure nanosheets. Frontiers in Bioengineering and Biotechnology, 2022, 9(1): 812403

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin J, Liu Y, Shi C, Le X, Zhou X, Zhao Z, Ou Y, Yang J. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal. International Journal of Biological Macromolecules, 2016, 84: 189–199

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Ding H, Wang B, Shi Q, Gao J, Cui Z, Wan Y. Dopamine functionalization for improving crystallization behaviour of polyethylene glycol in shape-stable phase change material with silica fume as the matrix. Journal of Cleaner Production, 2019, 208: 951–959

    Article  CAS  Google Scholar 

  18. Wang L, Shi Y, Chen S, Wang W, Tian M, Ning N, Zhang L. Highly efficient mussel-like inspired modification of aramid fibers by UV-accelerated catechol/polyamine deposition followed chemical grafting for high-performance polymer composites. Chemical Engineering Journal, 2017, 314: 583–593

    Article  CAS  Google Scholar 

  19. Deng M, Zhao H, Zhang S, Tian C, Zhang D, Du P, Liu C, Cao H, Li H. High catalytic activity of immobilized laccase on core-shell magnetic nanoparticles by dopamine self-polymerization. Journal of Molecular Catalysis B: Enzymatic, 2015, 112: 15–24

    Article  CAS  Google Scholar 

  20. Chen H, Hao Z, Li Y, Li Y, Wang X. Facile synthesis of oxidic PEG-modified magnetic polydopamine nanospheres for candida rugosa lipase immobilization. Applied Microbiology and Biotechnology, 2015, 99(3): 1249–1259

    Article  Google Scholar 

  21. Chen Y, Jiang Y, Gao J, Wu W, Dong L, Yang Z. Facile immobilization of nitrile hydratase in SBA-15 via a biomimetic coating. Journal of Porous Materials, 2017, 24(3): 787–793

    Article  CAS  Google Scholar 

  22. Zhang H R, Luo J Q, Li S S, Wei Y P, Wan Y H. Biocatalytic membrane based on polydopamine coating: a platform for studying immobilization mechanisms. Langmuir, 2018, 34(8): 2585–2594

    Article  CAS  PubMed  Google Scholar 

  23. Khan M K, Luo J Q, Wang Z S, Khan R, Chen X R, Wan Y H. Alginate dialdehyde meets nylon membrane: a versatile platform for facile and green fabrication of membrane adsorbers. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(11): 1640–1649

    Article  CAS  PubMed  Google Scholar 

  24. Wang S S, Li S, Liu R T, Zhang W, Xu H J, Hu Y. Immobilization of interfacial activated candida rugosa lipase onto magnetic chitosan using dialdehyde cellulose as cross-linking agent. Frontiers in Bioengineering and Biotechnology, 2022, 10: 946117

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ran F, Zou Y, Xu Y, Liu X, Zhang H. Fe3O4@MoS2@PEI-facilitated enzyme tethering for efficient removal of persistent organic pollutants in water. Chemical Engineering Journal, 2019, 375(1): 121947

    Article  CAS  Google Scholar 

  26. Xia T T, Liu C Z, Hu J H, Guo C. Improved performance of immobilized laccase on amine-functioned magnetic Fe3O4 nanoparticles modified with polyethylenimine. Chemical Engineering Journal, 2016, 295: 201–206

    Article  CAS  Google Scholar 

  27. Yang X Y, Chen Y F, Yao S, Qian J Q, Guo H, Cai X H. Preparation of immobilized lipase on magnetic nanoparticles dialdehyde starch. Carbohydrate Polymers, 2019, 218: 324–332

    Article  CAS  PubMed  Google Scholar 

  28. Qiu X, Wang Y, Xue Y, Li W X, Hu Y. Laccase immobilized on magnetic nanoparticles modified by amino-functionalized ionic liquid via dialdehyde starch for phenolic compounds biodegradation. Chemical Engineering Journal, 2020, 391: 123564

    Article  CAS  Google Scholar 

  29. Tang R, Du Y, Fan L. Dialdehyde starch-crosslinked chitosan films and their antimicrobial effects. Journal of Polymer Science Part B: Polymer Physics, 2003, 41(9): 993–997

    Article  CAS  Google Scholar 

  30. Gao J, Zhou J, Zhang X, Shi Q, Han Z, Chen Y. Facile functionalized mesoporous silica using biomimetic method as new matrix for preparation of shape: tabilized phase-change material with improved enthalpy. International Journal of Energy Research, 2019, 43(14): 8649–8659

    CAS  Google Scholar 

  31. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein—dye binding. Analytical Biochemistry, 1976, 72(1–2): 248–254

    Article  CAS  PubMed  Google Scholar 

  32. Wahab W A A, Karam E A, Hassan M E, Kansoh A L, Esawy M A, Awad G E A. Optimization of pectinase immobilization on grafted alginate-agar gel beads by 2(4) full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization. International Journal of Biological Macromolecules, 2018, 113: 159–170

    Article  PubMed  Google Scholar 

  33. Birhanli E, Noma S A A, Boran F, Ulu A, Yesilada O, Ates B. Design of laccase—metal—organic framework hybrid constructs for biocatalytic removal of textile dyes. Chemosphere, 2022, 292: 133382

    Article  CAS  PubMed  Google Scholar 

  34. Gascón V, Márquez-Álvarez C, Blanco R M. Efficient retention of laccase by non-covalent immobilization on aminofunctionalized ordered mesoporous silica. Applied Catalysis A: General, 2014, 482: 116–126

    Article  Google Scholar 

  35. Xiang X R, Ding S, Suo H B, Xu C, Gao Z, Hu Y. Fabrication of chitosan-mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization. Carbohydrate Polymers, 2018, 182: 245–253

    Article  CAS  PubMed  Google Scholar 

  36. Guo H, Lei B S, Yu J W, Chen Y F, Qian J Q. Immobilization of lipase by dialdehyde cellulose crosslinked magnetic nanoparticles. International Journal of Biological Macromolecules, 2021, 185: 287–296

    Article  CAS  PubMed  Google Scholar 

  37. Chen C, Sun W, Lv H Y, Li H, Wang Y B, Wang P. Spacer arm-facilitated tethering of laccase on magnetic polydopamine nanoparticles for efficient biocatalytic water treatment. Chemical Engineering Journal, 2018, 350: 949–959

    Article  CAS  Google Scholar 

  38. Hu T G, Cheng J H, Zhang B B, Lou W Y, Zong M H. Immobilization of alkaline protease on amino-functionalized magnetic nanoparticles and its efficient use for preparation of oat polypeptides. Industrial & Engineering Chemistry Research, 2015, 54(17): 4689–4698

    Article  CAS  Google Scholar 

  39. Xie W L, Zang X Z. Lipase immobilized on ionic liquid-functionalized magnetic silica composites as a magnetic biocatalyst for production of trans-free plastic fats. Food Chemistry, 2018, 257: 15–22

    Article  CAS  PubMed  Google Scholar 

  40. Hou C, Qi Z G, Zhu H. Preparation of core—shell magnetic polydopamine/alginate biocomposite for candida rugosa lipase immobilization. Colloids and Surfaces B: Biointerfaces, 2015, 128: 544–551

    Article  CAS  PubMed  Google Scholar 

  41. Liu R J, Huang W, Pan S, Li Y, Yu L L, He D W. Covalent immobilization and characterization of penicillin G acylase on magnetic Fe2O3/Fe3O4 heterostructure nanoparticles prepared via a novel solution combustion and gel calcination process. International Journal of Biological Macromolecules, 2020, 162(21): 1587–1596

    Article  CAS  PubMed  Google Scholar 

  42. Huang W, Pan S, Li Y, Yu L L, Liu R J. Immobilization and characterization of cellulase on hydroxy and aldehyde functionalized magnetic Fe2O3/Fe3O4 nanocomposites prepared via a novel rapid combustion process. International Journal of Biological Macromolecules, 2020, 162(21): 845–852

    Article  CAS  PubMed  Google Scholar 

  43. Dhiman S, Srivastava B, Singh G, Khatri M, Arya S K. Immobilization of mannanase on sodium alginate-grafted-beta-cyclodextrin: an easy and cost effective approach for the improvement of enzyme properties. International Journal of Biological Macromolecules, 2020, 156: 1347–1358

    Article  CAS  PubMed  Google Scholar 

  44. Ahmed S A, Saleh S A A, Abdel-Hameed S A M, Fayad A M. Catalytic, kinetic and thermodynamic properties of free and immobilized caseinase on mica glass-ceramics. Heliyon, 2019, 5(5): 1–12

    Article  Google Scholar 

  45. Wehaidy H R, Abdel-Naby M A, El-Hennawi H M, Youssef H F. Nanoporous zeolite-x as a new carrier for laccase immobilization and its application in dyes decolorization. Biocatalysis and Agricultural Biotechnology, 2019, 19: 101135

    Article  Google Scholar 

  46. Qiu X, Wang S S, Miao S S, Suo H B, Xu H J, Hu Y. Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. Journal of Hazardous Materials, 2021, 401: 123353

    Article  CAS  PubMed  Google Scholar 

  47. Wu E H, Li Y X, Huang Q, Yang Z K, Wei A Y, Hu Q. Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal. Chemosphere, 2019, 233: 327–335

    Article  CAS  PubMed  Google Scholar 

  48. Chao C, Liu J D, Wang J T, Zhang Y W, Zhang B, Zhang Y T, Xiang X, Chen R F. Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Applied Materials & Interfaces, 2013, 5(21): 10559–10564

    Article  CAS  Google Scholar 

  49. Mohammadi M, As’habi M A, Salehi P, Yousefi M, Nazari M, Brask J. Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds. International Journal of Biological Macromolecules, 2018, 109: 443–447

    Article  CAS  PubMed  Google Scholar 

  50. Pang R, Li M Z, Zhang C D. Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation. Talanta, 2015, 131: 38–45

    Article  CAS  PubMed  Google Scholar 

  51. Ren D J, Jiang S, Fu L J, Wang Z B, Zhang S Q, Zhang X Q, Gong X Y, Chen W S. Laccase immobilized on aminofunctionalized magnetic Fe3O4—SiO2 core—shell material for 2,4-dichlorophenol removal. Environmental Technology, 2021, 3: 1–22

    Google Scholar 

  52. Chen Z H, Yao J, Ma B, Liu B, Kim J, Li H, Zhu X Z, Zhao C C, Amde M. A robust biocatalyst based on laccase immobilized superparamagnetic Fe3O4@SiO2-NH2 nanoparticles and its application for degradation of chlorophenols. Chemosphere, 2022, 291(1): 132727

    Article  CAS  PubMed  Google Scholar 

  53. Huan W W, Yang Y X, Wu B, Yuan H M, Zhang Y N, Liu X N. Degradation of 2,4-DCP by theimmobilized laccase on the carrier of Fe3O4@SiO2-NH2. Chinese Journal of Chemistry, 2012, 30(12): 2849–2860

    Article  CAS  Google Scholar 

  54. Yang J, Hu Y, Jiang L, Zou B, Jia R, Huang H. Enhancing the catalytic properties of porcine pancreatic lipase by immobilization on SBA-15 modified by functionalized ionic liquid. Biochemical Engineering Journal, 2013, 70: 46–54

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 22178174), the National Key R&D Program of China (Grant No.2021YFC2103802), and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (Grant No. XTC2206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Liu, R., Yang, X. et al. Immobilization of laccase on organic-inorganic nanocomposites and its application in the removal of phenolic pollutants. Front. Chem. Sci. Eng. 17, 867–879 (2023). https://doi.org/10.1007/s11705-022-2277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2277-5

Keywords

Navigation