Skip to main content
Log in

Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal of acid red 134

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The discharge of large amounts of dye-containing wastewater seriously threats the environment. Adsorbents have been adopted to remove these dyes present in the wastewater. However, the high adsorption capacity, predominant pH-responsibility, and excellent recyclability are three challenges to the development of efficient adsorbents. The poly(acryloxyethyl trimethylammonium chloride)-graft-dialdehyde cellulose nanocrystals were synthesized in our work. Subsequently, the cationic dialdehyde cellulose nanocrystal cross-linked chitosan nanocomposite foam was fabricated via freeze-drying of the hydrogel. Under the optimal ratio of the cationic dialdehyde cellulose nanocrystal/chitosan (w/w) of 12/100, the resultant foam (Foam-12) possesses excellent absorption properties, such as high porosity, high content of active sites, strong acid resistance, and high amorphous region. Then, Foam-12 was applied as an eco-friendly adsorbent to remove acid red 134 (a representative of anionic dyes) from aqueous solutions. The maximum dye adsorption capacity of 1238.1 mg·g−1 is achieved under the conditions of 20 mg·L−1 adsorbents, 100 mg·L−1 dye, pH 3.5, 24 h, and 25 °C. The dominant adsorption mechanism for the anionic dye adsorption is electrostatic attraction, and Foam-12 can effectively adsorb acid red 134 at pH 2.5–5.5 and be desorbed at pH 8. Its easy recovery and good reusability are verified by the repeated acid adsorption-alkaline desorption experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holkar C R, Jadhav A J, Pinjari D V, Mahamuni N M, Pandit A B. A critical review on textile wastewater treatments: possible approaches. Journal of Environmental Management, 2016, 182: 351–366

    Article  CAS  PubMed  Google Scholar 

  2. Hao X, Chen G, Yuan Z. Water in China. Water Research, 2019, 169: 115256

    Article  PubMed  Google Scholar 

  3. Rodrigues C S D, Madeira L M, Boaventura R A. Decontamination of an industrial cotton dyeing wastewater by chemical and biological processes. Industrial & Engineering Chemistry Research, 2014, 53(6): 2412–2421

    Article  CAS  Google Scholar 

  4. Varjani S, Rakholiya P, Ng H Y, You S, Teixeira J A. Microbial degradation of dyes: an overview. Bioresource Technology, 2020, 314: 123728

    Article  CAS  PubMed  Google Scholar 

  5. Wang K X, Wei T T, Li Y N, He L, Lv Y, Chen L, Ahmad A, Xu Y S, Shi Y L. Flocculation-to-adsorption transition of novel salt-responsive polyelectrolyte for recycling of highly polluted saline textile effluents. Chemical Engineering Journal, 2021, 413: 127410

    Article  CAS  Google Scholar 

  6. Yagub M T, Sen T K, Afroze S, Ang H M. Dye and its removal from aqueous solution by adsorption: a review. Advances in Colloid and Interface Science, 2014, 209: 172–184

    Article  CAS  PubMed  Google Scholar 

  7. Ramazani A, Oveisi M, Sheikhi M, Gouranlou F. Natural polymers as environmental friendly adsorbents for organic pollutants such as dyes removal from colored wastewater. Current Organic Chemistry, 2018, 22(13): 1297–1306

    Article  CAS  Google Scholar 

  8. Bozoğlan B K, Duman O, Tunç S. Preparation and characterization of thermosensitive chitosan/carboxymethylcellulose/scleroglucan nanocomposite hydrogels. International Journal of Biological Macromolecules, 2020, 162: 781–797

    Article  PubMed  Google Scholar 

  9. Bozoğlan B K, Duman O, Tunç S. Smart antifungal thermosensitive chitosan/carboxymethyl cellulose/scleroglucan/montmorillonite nanocomposite hydrogels for onychomycosis treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125600

    Article  Google Scholar 

  10. Huo M X, Jin Y L, Sun Z F, Ren F, Pei L, Ren P G. Facile synthesis of chitosan-based acid-resistant composite films for efficient selective adsorption properties towards anionic dyes. Carbohydrate Polymers, 2021, 254: 117473

    Article  CAS  PubMed  Google Scholar 

  11. Zhao X L, Wang X J, Lou T. Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. Journal of Hazardous Materials, 2021, 403: 124054

    Article  CAS  PubMed  Google Scholar 

  12. Salehi E, Soroush F, Momeni M, Barati A, Khakpour A. Chitosan/polyethylene glycol impregnated activated carbons: synthesis, characterization and adsorption performance. Frontiers of Chemical Science and Engineering, 2017, 11: 575–585

    Article  CAS  Google Scholar 

  13. Ke P, Zeng D L, Xu K, Cui J W, Li X, Wang G H. Preparation of quaternary ammonium salt-modified chitosan microspheres and their application in dyeing wastewater treatment. ACS Omega, 2020, 5(38): 24700–24707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salehi E, Daraei P, Shamsabadi A A. A review on chitosan-based adsorptive membranes. Carbohydrate Polymers, 2016, 152: 419–432

    Article  CAS  PubMed  Google Scholar 

  15. Fiamingo A, Campana-Filho S P. Structure, morphology and properties of genipin-crosslinked carboxymethylchitosan porous membranes. Carbohydrate Polymers, 2016, 143: 155–163

    Article  CAS  PubMed  Google Scholar 

  16. Yang H, Sheikhi A, Van De Ven T G M. Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir, 2016, 32(45): 11771–11779

    Article  CAS  PubMed  Google Scholar 

  17. Khapre M A, Pandey S, Jugade R M. Glutaraldehyde-cross-linked chitosan-alginate composite for organic dyes removal from aqueous solutions. International Journal of Biological Macromolecules, 2021, 190: 862–875

    Article  CAS  PubMed  Google Scholar 

  18. Selkala T, Suopajarvi T, Sirvio J A, Luukkonen T, Kinnunen P, de Carvalho A L C B, Liimatainen H. Surface modification of cured inorganic foams with cationic cellulose nanocrystals and their use as reactive filter media for anionic dye removal. ACS Applied Materials & Interfaces, 2020, 12(24): 27745–27757

    Article  CAS  Google Scholar 

  19. Tian X Z, Hua F, Lou C Q, Jiang X. Cationic cellulose nanocrystals (CCNCs) and chitosan nanocomposite films filled with CCNCs for removal of reactive dyes from aqueous solutions. Cellulose, 2018, 25(7): 3927–3939

    Article  CAS  Google Scholar 

  20. Xu J F, Li X Y, Xu Y Q, Wang A Q, Xu Z L, Wu X, Li D F, Mu C D, Ge L M. Dihydromyricetin-loaded pickering emulsions stabilized by dialdehyde cellulose nanocrystals for preparation of antioxidant gelatin-based edible films. Food and Bioprocess Technology, 2021, 14(9): 1648–1661

    Article  CAS  Google Scholar 

  21. Jiang X, Lou C Q, Hua F, Deng H B, Tian X Z. Cellulose nanocrystals-based flocculants for high-speed and high-efficiency decolorization of colored effluents. Journal of Cleaner Production, 2020, 251: 119749

    Article  CAS  Google Scholar 

  22. Tian X Z, Jiang X. Preparing water-soluble 2,3-dialdehyde cellulose as a bio-origin cross-linker of chitosan. Cellulose, 2018, 25(2): 987–998

    Article  CAS  Google Scholar 

  23. Tian X Z, Yan D D, Lu Q X, Jiang X. Cationic surface modification of nanocrystalline cellulose as reinforcements for preparation of the chitosan-based nanocomposite films. Cellulose, 2017, 24(1): 163–174

    Article  CAS  Google Scholar 

  24. Pietrucha K, Safandowska M. Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochemistry, 2015, 50(12): 2105–2111

    Article  CAS  Google Scholar 

  25. Tian X Z, Yang R, Chen T, Cao Y, Deng H B, Zhang M Y, Jiang X. Removal of both anionic and cationic dyes from wastewater using pH-responsive adsorbents of l-lysine molecular-grafted cellulose porous foams. Journal of Hazardous Materials, 2022, 426: 128121

    Article  CAS  PubMed  Google Scholar 

  26. Chen D, van de Ven T G M. Morphological changes of sterically stabilized nanocrystalline cellulose after periodate oxidation. Cellulose, 2016, 23(2): 1051–1059

    Article  CAS  Google Scholar 

  27. Teotia A, Ikram S, Gupta B. Structural characterization of chitosan and oxidized carboxymethyl cellulose based freeze-dried films. Polymer Bulletin, 2012, 69(2): 175–188

    Article  CAS  Google Scholar 

  28. Ayranci E, Duman O. In-situ UV-visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth. Separation Science and Technology, 2009, 44(15): 3735–3752

    Article  CAS  Google Scholar 

  29. Ayranci E, Duman O. Structural effects on the interactions of benzene and naphthalene sulfonates with activated carbon cloth during adsorption from aqueous solutions. Chemical Engineering Journal, 2010, 156(1): 70–76

    Article  CAS  Google Scholar 

  30. Li Y X, Yang Z X, Wang Y L, Bai Z L, Zheng T, Dai X, Liu S T, Gui D X, Liu W, Chen M. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nature Communications, 2017, 8: 1354

    Article  PubMed  PubMed Central  Google Scholar 

  31. He L W, Chen L, Dong X L, Zhang S T, Zhang M X, Dai X, Liu X J, Lin P, Li K F, Chen C L. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem, 2021, 7(3): 699–714

    Article  CAS  Google Scholar 

  32. Liang C Y, Cheng L W, Zhang S T, Yang S R, Liu W, Xie J, Chai Z F, Li M D, Wang Y X, Wang S. Boosting the optoelectronic performance by regulating exciton behaviors in a porous semiconductive metal-organic framework. Journal of the American Chemical Society, 2022, 144(5): 2189–2196

    Article  CAS  PubMed  Google Scholar 

  33. Jiang X, Sun Y M, Liu L, Wang S G, Tian X Z. Adsorption of C. I. reactive blue 19 from aqueous solutions by porous particles of the grafted chitosan. Chemical Engineering Journal, 2014, 235: 151–157

    Article  CAS  Google Scholar 

  34. Duman O, Tunç S, Bozoğlan B K, Polat T G. Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite. Journal of Alloys and Compounds, 2016, 687: 370–383

    Article  CAS  Google Scholar 

  35. Duman O, Tunç S, Polat T G. Adsorptive removal of triarylmethane dye (basic red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent. Microporous and Mesoporous Materials, 2015, 210: 176–184

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Advance Research Foundation of Shaanxi University of Science and Technology (Grant No. 2020XSGG-07), the Key Research and Development Program of Shaanxi Province (Grant No. 2022GY-278) and the Natural Science Basic Research Program of Shannxi (Program No. 2023-JC-YB-104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Yang, R., Xiong, C. et al. Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal of acid red 134. Front. Chem. Sci. Eng. 17, 853–866 (2023). https://doi.org/10.1007/s11705-022-2256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2256-x

Keywords

Navigation