Skip to main content
Log in

Hierarchically porous zeolites synthesized with carbon materials as templates

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Hierarchically porous zeolites are promising candidates in catalytic conversion of relatively bulky molecules, and their syntheses have attracted significant attention. From both industrial and scientific perspectives, different carbon materials have been widely employed as hard templates for the preparation of hierarchically porous zeolites during the past two decades. In this review, the progress in synthetic strategies using carbon materials as templates is comprehensively summarized. Depending on the affinity between the carbon templates and zeolite precursors, the substantial strategies for synthesizing hierarchical zeolites are introduced in direct templates and indirect templates. Direct templates methods, by which the carbon materials are directly mixed with precursors gel as hard templates, are first reviewed. Then, we discuss the indirect templates method (crystallization of carbon-silica composites), by which the carbon is produced by in situ pyrolysis of organic-inorganic precursors. In addition, the technique of encapsulating metal species into zeolites crystals with the assistance of carbon templates is also discussed. In the conclusion part, the factors affecting the synthesis of carbon-templated hierarchically porous zeolites are remarked. This review is expected to attract interest in the synthesis strategies of hierarchically porous zeolites, especially cost-effective and large-scale production methodologies, which are essential to the industrial application of hierarchical zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen L H, Sun M H, Wang Z, Yang W M, Xie Z K, Su B L. Hierarchically structured zeolites: from design to application. Chemical Reviews, 2020, 120(20): 11194–11294

    Article  CAS  PubMed  Google Scholar 

  2. de Jong K P, Zečević J, Friedrich H, de Jongh P E, Bulut M, van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angewandte Chemie International Edition, 2010, 49(52): 10074–10078

    Article  CAS  PubMed  Google Scholar 

  3. Fu T J, Qi R Y, Wan W L, Shao J, Wen J Z, Li Z. Fabrication of hollow mesoporous nanosized ZSM-5 catalyst with superior methanol-to-hydrocarbons performance by controllable desilication. ChemCatChem, 2017, 9(22): 4212–4224

    Article  CAS  Google Scholar 

  4. Fang Y H, Yang F, He X, Zhu X D. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization. Frontiers of Chemical Science and Engineering, 2019, 13(3): 543–553

    Article  CAS  Google Scholar 

  5. Yang S T, Yu C X, Yu L L, Miao S, Zou M M, Jin C Z, Zhang D Z, Xu L Y, Huang S J. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angewandte Chemie International Edition, 2017, 56(41): 12553–12556

    Article  CAS  PubMed  Google Scholar 

  6. Li Q, Dou T, Zhang Y, Li Y P, Wang S, Sun F M. Synthesis, characterization and catalytic properties of mesoporous MCM-48 containing zeolite secondary building units. Frontiers of Chemical Science and Engineering, 2007, 1(1): 1–5

    CAS  Google Scholar 

  7. Zhang W M, Ming W X, Hu S F, Qin B, Ma J H, Li R F. A feasible one-step synthesis of hierarchical zeolite Beta with uniform nanocrystals via CTAB. Materials (Basel), 2018, 11(5): 651–662

    Article  Google Scholar 

  8. Du S T, Li F, Sun Q M, Wang N, Jia M J, Yu J H. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chemical Communications (Cambridge), 2016, 52(16): 3368–3371

    Article  CAS  Google Scholar 

  9. Xu H, Lei C, Wu Q M, Zhu Q Y, Meng X J, Dai D, Maurer S, Parvulescu A N, Müller U, Xiao F S. Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance in the methanol-to-olefins reaction. Frontiers of Chemical Science and Engineering, 2020, 14(2): 267–274

    Article  CAS  Google Scholar 

  10. Xu S M, Zhang X X, Cheng D G, Chen F Q, Ren X H. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789

    Article  CAS  Google Scholar 

  11. Sun Q M, Wang N, Xi D Y, Yang M, Yu J H. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chemical Communications (Cambridge), 2014, 50(49): 6502–6505

    Article  CAS  Google Scholar 

  12. Liu J Y, Wang J G, Li N, Zhao H, Zhou H J, Sun P C, Chen T H. Polyelectrolyte-surfactant complex as a template for the synthesis of zeolites with intracrystalline mesopores. Langmuir, 2012, 28(23): 8600–8607

    Article  CAS  PubMed  Google Scholar 

  13. Guo D X, Shi C X, Zhao H, Chen R, Chen S H, Sun P C, Chen T H. Polyacrylic acid as mesoscale template for synthesis of MFI zeolite with plentiful intracrystalline mesopores. Microporous and Meso-porous Materials, 2020, 293: 109821–109828

    Article  CAS  Google Scholar 

  14. Shao Y C, Wang Y C, Liu X F, Li T D, Haydel P R, Tatsumi T, Wang J G. A single-crystalline hierarchical zeolite via an oriented co-growth of nanocrystals based on synergy of polyelectrolytes and hetero-atoms. ChemCatChem, 2020, 12(10): 2702–2707

    Article  CAS  Google Scholar 

  15. Zhu J, Zhu Y H, Zhu L K, Rigutto M, van der Made A, Yang C G, Pan S X, Wang L, Zhu L F, Jin Y Y, et al. Highly mesoporous single-crystalline zeolite Beta synthesized using a nonsurfactant cationic polymer as a dual-function template. Journal of the American Chemical Society, 2014, 136(6): 2503–2510

    Article  CAS  PubMed  Google Scholar 

  16. Jin D L, Ye G H, Zheng J W, Yang W M, Zhu K, Coppens M O, Zhou X G. Hierarchical silicoaluminophosphate catalysts with enhanced hydroisomerization selectivity by directing the orientated assembly of premanufactured building blocks. ACS Catalysis, 2017, 7(9): 5887–5902

    Article  CAS  Google Scholar 

  17. Schmidt I, Boisen A, Gustavsson E, Ståhl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418

    Article  CAS  Google Scholar 

  18. Chen H Y, Wydra J, Zhang X Y, Lee P S, Wang Z P, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393

    Article  CAS  PubMed  Google Scholar 

  19. Machoke A G, Beltrán A M, Inayat A, Winter B, Weissenberger T, Kruse N, Güttel R, Spiecker E, Schwieger W. Micro/Macroporous system: MFI-type zeolite crystals with embedded macropores. Advanced Materials, 2015, 27(6): 1066–1070

    Article  CAS  PubMed  Google Scholar 

  20. Weissenberger T, Leonhardt R, Zubiri B A, Pitínová-Štekrová M, Sheppard T L, Reiprich B, Bauer J, Dotzel R, Kahnt M, Schropp A, et al. Synthesis and characterisation of hierarchically structured titanium silicalite-1 zeolites with large intracrystalline macropores. Chemistry, 2019, 25(63): 14430–14440

    Article  CAS  PubMed  Google Scholar 

  21. Shi Y, Li X, Hu J K, Lu J H, Ma Y C, Zhang Y H, Tang Y. Zeolite microspheres with hierarchical structures: formation, mechanism and catalytic performance. Journal of Materials Chemistry, 2011, 21(40): 16223–16230

    Article  CAS  Google Scholar 

  22. Wang P Q, Li Z B, Wang X T, Tong Y M, Yuan F L, Zhu Y J. One-pot synthesis of Cu/SAPO-34 with hierarchical pore using cupric citrate as a copper source for excellent NH3-SCR of NO performance. ChemCatChem, 2020, 12(19): 4871–4878

    Article  CAS  Google Scholar 

  23. Sun Q M, Wang N, Bai R S, Chen X X, Yu J H. Seeding induced nano-sized hierarchical SAPO-34 zeolites: cost-effective synthesis and superior MTO performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(39): 14978–14982

    Article  CAS  Google Scholar 

  24. Zhang Q, Mayoral A, Terasaki O, Zhang Q, Ma B, Zhao C, Yang G J, Yu J H. Amino acid-assisted construction of single-crystalline hierarchical nanozeolites via oriented-aggregation and intraparticle ripening. Journal of the American Chemical Society, 2019, 141(9): 3772–3776

    Article  CAS  PubMed  Google Scholar 

  25. Ding K L, Corma A, Maciá-Agulló J A, Hu J G, Krämer S, Stair P C, Stucky G D. Constructing hierarchical porous zeolites via kinetic regulation. Journal of the American Chemical Society, 2015, 137(35): 11238–11241

    Article  CAS  PubMed  Google Scholar 

  26. Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117

    Article  CAS  Google Scholar 

  27. Fang Y M, Hu H Q, Chen G H. Zeolite with tunable intracrystal mesoporosity synthesized with carbon aerogel as a secondary template. Microporous and Mesoporous Materials, 2008, 113(1–3): 481–489

    Article  CAS  Google Scholar 

  28. Du J, Wang Q H, Wang Y, Guo Y N, Li R F. A hierarchical zeolite Beta with well-connected pores via using graphene oxide. Materials Letters, 2019, 250: 139–142

    Article  CAS  Google Scholar 

  29. Cho H S, Ryoo R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151: 107–112

    Article  CAS  Google Scholar 

  30. Wei X T, Smirniotis P G. Synthesis and characterization of mesoporous ZSM-12 by using carbon particles. Microporous and Mesoporous Materials, 2006, 89(1–3): 170–178

    Article  CAS  Google Scholar 

  31. Schwanke A, Villarroel-Rocha J, Sapag K, Díaz U, Corma A, Pergher S. Dandelion-like microspherical MCM-22 zeolite using BP 2000 as a hard template. ACS Omega, 2018, 3(6): 6217–6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmidt F, Paasch S, Brunner E, Kaskel S. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous and Mesoporous Materials, 2012, 164: 214–221

    Article  CAS  Google Scholar 

  33. Chen H, Zhang X W, Zhang J F, Wang Q F. Controllable synthesis of hierarchical ZSM-5 for hydroconversion of vegetable oil to aviation fuel like hydrocarbons. RSC Advances, 2017, 7(73): 46109–46117

    Article  CAS  Google Scholar 

  34. Varzaneh A Z, Towfighi J, Sahebdelfarb S, Bahrami H. Carbon nanotube templated synthesis of hierarchical SAPO-34 catalysts with different structure directing agents for catalytic onversion of methanol to light olefins. Journal of Analytical and Applied Pyrolysis, 2016, 121: 11–23

    Article  CAS  Google Scholar 

  35. Manrique C, Guzmán A, Pérez-Pariente J, Márquez-Álvarez C, Echavarrí A. Vacuum gas-oil hydrocracking performance of Beta zeolite obtained by hydrothermal synthesis using carbon nanotubes as mesoporous template. Fuel, 2016, 182: 236–247

    Article  CAS  Google Scholar 

  36. Li M R, Zhou Y P, Fang Y M. Functioned carbon nanotube templated hierarchical silicate-1 synthesis: on the existence of super-micropore. Microporous and Mesoporous Materials, 2016, 225: 392–398

    Article  CAS  Google Scholar 

  37. Tao Y S, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974–10976

    Article  CAS  Google Scholar 

  38. Tao Y S, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045

    Article  CAS  PubMed  Google Scholar 

  39. White R J, Fischer A, Goebel C, Thomas A. A sustainable template for mesoporous zeolite synthesis. Journal of the American Chemical Society, 2014, 136(7): 2715–2718

    Article  CAS  PubMed  Google Scholar 

  40. de la Iglesia Ó, Sánchez J L, Coronas J. Hierarchical silicalite-1 structures based on pyrolized materials. Materials Letters, 2011, 65(19–20): 3124–3127

    Article  CAS  Google Scholar 

  41. Li D, Qiu L, Wang K, Zeng Y, Li D, Williams T, Huang Y, Tsapatsis M, Wang H T. Growth of zeolite crystals with graphene oxide nanosheets. Chemical Communications, 2012, 48(16): 2249–2251

    Article  CAS  PubMed  Google Scholar 

  42. Ren Z, Kim E, Pattinson S W, Subrahmanyam K S, Rao C N R, Cheetham A K, Eder D. Hybridizing photoactive zeolites with graphene: a powerful strategy towards superior photocatalytic properties. Chemical Science, 2012, 3(1): 209–216

    Article  CAS  Google Scholar 

  43. Zhang L C, Sun X B, Pan M, Yang X N, Liu Y C, Sun J H, Wang Q H, Zheng J J, Wang Y, Ma J H, et al. Interfacial effects between carbon nanotube templates and precursors on fabricating a wall-crystallized hierarchical pore system in zeolite crystals. Journal of Materials Science, 2020, 55(24): 10412–10426

    Article  CAS  Google Scholar 

  44. Han S Y, Wang Z, Meng L Y, Jiang N Z. Synthesis of uniform mesoporous ZSM-5 using hydrophilic carbon as a hard template. Materials Chemistry and Physics, 2016, 177: 112–117

    Article  CAS  Google Scholar 

  45. Bértolo R, Silva J M, Ribeiroa F, Maldonado-Hódar F J, Fernandes A, Martins A. Effects of oxidant acid treatments on carbon-templated hierarchical SAPO-11 materials: synthesis, characterization and catalytic evaluation in n-decane hydroisomerization. Applied Catalysis A, General, 2014, 485: 230–237

    Article  Google Scholar 

  46. Zhao S F, Wang W D, Wang L Z, Schwieger W, Wang W, Huang J. Tuning hierarchical ZSM-5 zeolite for both gas- and liquid-phase biorefining. ACS Catalysis, 2020, 10(2): 1185–1194

    Article  CAS  Google Scholar 

  47. Yoo W C, Kumar S, Wang Z Y, Ergang N S, Fan W, Karanikolos G N, McCormick A V, Penn R L, Tsapatsis M, Stein A. Nanoscale reactor engineering: hydrothermal synthesis of uniform zeolite particles in massively parallel reaction chambers. Angewandte Chemie International Edition, 2008, 47(47): 9096–9099

    Article  CAS  PubMed  Google Scholar 

  48. Yoo W C, Kumar S, Penn R L, Tsapatsis M, Stein A. Growth patterns and shape development of zeolite nanocrystals in confined syntheses. Journal of the American Chemical Society, 2009, 131(34): 12377–12383

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z P, Dornath P, Chang C C, Chen H Y, Fan W. Confined synthesis of three-dimensionally ordered mesoporous imprinted zeolites with tunable morphology and Si/Al ratio. Microporous and Mesoporous Materials, 2013, 181: 8–16

    Article  CAS  Google Scholar 

  50. Chen H Y, Lee P S, Zhang X Y, Lu D. Structure replication and growth development of three-dimensionally ordered mesoporous-imprinted zeolites during confined growth. Journal of Materials Research, 2013, 28(10): 1356–1364

    Article  CAS  Google Scholar 

  51. Cho H J, Dornath P, Fan W. Synthesis of hierarchical Sn-MFI as Lewis acid catalysts for isomerization of cellulosic sugars. ACS Catalysis, 2014, 4(6): 2029–2037

    Article  CAS  Google Scholar 

  52. Wang J, Yang M F, Shang W J, Su X P, Hao Q Q, Chen H Y, Ma X X. Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous imprinted structure. Microporous and Mesoporous Materials, 2017, 252: 10–16

    Article  CAS  Google Scholar 

  53. Wang J, Yang M F, Zhang J B, Zhang S P, Wang X X, Fu K, Wang M Y, Sahng W J, Chen H Y, Ma X X. Fabrication of *BEA/MFI zeolite nanocomposites by confined space synthesis. Materials Chemistry and Physics, 2018, 207: 167–174

    Article  CAS  Google Scholar 

  54. Madsen C, Madsen C, Jacobsen C J H. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis. Chemical Communications, 1999, 8(8): 673–674

    Article  Google Scholar 

  55. Schmidt I, Madsen C, Jacobsen C J H. Confined space synthesis. A novel route to nanosized zeolites. Inorganic Chemistry, 2000, 39(11): 2279–2283

    Article  CAS  PubMed  Google Scholar 

  56. Jacobsen C J H, Madsen C, Janssens T V W, Jakobsen H J, Skibsted J. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Microporous and Mesoporous Materials, 2000, 39(1–2): 393–401

    Article  CAS  Google Scholar 

  57. Christensen C H, Johannsen K, Schmidt I, Christensen C H. Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials. Journal of the American Chemical Society, 2003, 125(44): 13370–13371

    Article  CAS  PubMed  Google Scholar 

  58. Schmidt I, Krogh A, Wienberg K, Carlsson A, Brorson M, Jacobsen C J H. Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite. Chemical Communications, 2000, 21(21): 2157–2158

    Article  Google Scholar 

  59. Kustova M Y, Hasselriis P, Christensen C H. Mesoporous MEL-type zeolite single crystal catalysts. Catalysis Letters, 2004, 96(3–4): 205–211

    Article  CAS  Google Scholar 

  60. Kustova M Y, Rasmussen S B, Kustov A L, Christensen C H. Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts: improved performance with hierarchically porous zeolites. Applied Catalysis B: Environmental, 2006, 67(1–2): 60–67

    Article  CAS  Google Scholar 

  61. Xin H C, Zhao J, Xu S T, Li J P, Zhang W P, Guo X W, Hensen E J M, Yang Q H, Li C. Enhanced catalytic oxidation by hierarchically structured TS-1 zeolite. Journal of Physical Chemistry, 2010, 114(14): 6553–6559

    CAS  Google Scholar 

  62. Holm M S, Egeblad K, Vennestrøm P N R, Hartmann C G, Kustova M, Christensen C H. Enhancing the porosity of mesoporous carbon-templated ZSM-5 by desilication. European Journal of Inorganic Chemistry, 2008, 33(33): 5185–5189

    Article  Google Scholar 

  63. Rimaz S, Halladj R, Askari S. Synthesis of hierarchal SAPO-34 nano catalyst with dry gel conversion method in the presence of carbon nanotubes as a hard template. Journal of Colloid and Interface Science, 2016, 464: 137–146

    Article  CAS  PubMed  Google Scholar 

  64. Deng Z Y, Zhang Y C, Zhu K, Qian G, Zhou X G. Carbon nanotubes as transient inhibitors in steam-assisted crystallization of hierarchical ZSM-5 zeolites. Materials Letters, 2015, 159: 466–469

    Article  CAS  Google Scholar 

  65. Zhu K, Egeblad K, Christensen C H. Mesoporous carbon prepared from carbohydrate as hard template for hierarchically porous zeolites. European Journal of Inorganic Chemistry, 2007, 2007(25): 3955–3960

    Article  Google Scholar 

  66. Song Y, Hua Z, Zhu Y, Zhou X, Wu W, Zhang L, Shi J. An in situ carbonaceous mesoporous template for the synthesis of hierarchical ZSM-5 zeolites by one-pot steam-assisted crystallization. Chemistry, an Asian Journal, 2012, 7(12): 2772–2776

    Article  CAS  PubMed  Google Scholar 

  67. Nandan D, Saxena S K, Viswanadham N. Synthesis of hierarchical ZSM-5 using glucose as a templating precursor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(4): 1054–1059

    Article  CAS  Google Scholar 

  68. Sun M H, Chen L H, Yu S, Li Y, Zhou X G, Hu Z Y, Sun H Y, Xu Y, Su B L. Micron-sized zeolite Beta single crystals featuring intracrystal interconnected ordered macro-meso-microporosity displaying superior catalytic performance. Angewandte Chemie International Edition, 2020, 59(44): 19582–19591

    Article  CAS  PubMed  Google Scholar 

  69. Sun M H, Zhou J, Hu Z Y, Chen L H, Li L Y, Wang Y D, Xie Z K, Turner S, Tendeloo G V, Hasan T, et al. Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency. Mater, 2020, 3(4): 1226–1245

    Google Scholar 

  70. Fan W, Snyder M A, Kumar S, Lee P S, Yoo W C, Mccormick A V, Penn R L, Stein A, Tsapaysis M. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984–991

    Article  CAS  PubMed  Google Scholar 

  71. Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999, 103(37): 7743–7746

    Article  CAS  Google Scholar 

  72. Jun S, Joo S H, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712–10713

    Article  CAS  Google Scholar 

  73. Zhang Y W, Okubo T, Ogura M. Synthesis of mesoporous aluminosilicate with zeolitic characteristics using vapor phase transport. Chemical Communications, 2005, 1(21): 2719–2720

    Article  Google Scholar 

  74. Ogura M, Zhang Y W, Elangovan S P, Okubo T. Formation of ZMM-n: the composite materials having both natures of zeolites and mesoporous silica materials. Microporous and Mesoporous Materials, 2007, 101(1–2): 224–230

    Article  CAS  Google Scholar 

  75. Wang J, Vinu A, Coppens M O. Synthesis and structure of silicalite-1/SBA-15 composites prepared by carbon templating and crystallization. Journal of Materials Chemistry, 2007, 17(40): 4265–4273

    Article  CAS  Google Scholar 

  76. Sun C, Du J M, Liu J, Yang Y, Ren N, Shen N, Xu H L, Tang Y. A facile route to synthesize endurable mesopore containing ZSM-5 catalyst for methanol to propylene reaction. Chemical Communications, 2010, 46(15): 2671–2673

    Article  CAS  PubMed  Google Scholar 

  77. Pei X Y, Liu X X, Liu X Y, Shan J L, Fu H, Xie Y, Yan X M, Meng X Z, Zheng Y C, Li G, et al. Synthesis of hierarchical titanium silicalite-1 using a carbon-silica-titania composite from aerogel mild carbonization. Catalysts, 2019, 9(8): 672–680

    Article  CAS  Google Scholar 

  78. Xue C F, Zhang F, Wu L M, Zhao D Y. Vapor assisted “in situ” transformation of mesoporous carbon-silica composite for hierarchically porous zeolites. Microporous and Mesoporous Materials, 2012, 151: 495–500

    Article  CAS  Google Scholar 

  79. Du J, Wang Y, Wang Y, Ma J H, Li R F. In situ recrystallization of mesoporous carbon-silica composite for the synthesis of hierarchically porous zeolites. Materials (Basel), 2020, 13(7): 1640–1649

    Article  CAS  Google Scholar 

  80. Tanaka S, Yuan C, Miyake Y. Synthesis of silicalite-1 using an interspace of ordered mesoporous carbon-silica nanocomposites: introduction of mesoporosity in zeolite crystals. Microporous and Mesoporous Materials, 2008, 113(1–3): 418–426

    Article  CAS  Google Scholar 

  81. Du J, Wang Y, Wang Y, Ma J H, Li R F. Preparation of hierarchical ZSM-5 zeolites by in-situ crystallization of mesoporous carbon-silica composite. ChemistrySelect, 2020, 5(44): 14130–14135

    Article  CAS  Google Scholar 

  82. Kustova M, Egeblad K, Zhu K, Christensen C H. Versatile route to zeolite single crystals with controlled mesoporosity: in situ sugar decomposition for templating of hierarchically porous zeolites. Chemistry of Materials, 2007, 19(12): 2915–2917

    Article  CAS  Google Scholar 

  83. Wang X, Li G, Wang W, Jin C, Chen Y. Synthesis, characterization and catalytic performance of hierarchical TS-1 with carbon template from sucrose carbonization. Microporous and Mesoporous Materials, 2011, 142(2–3): 494–502

    Article  CAS  Google Scholar 

  84. Liu P, Jin L N, Jin C, Zhang J N, Bian S W. Synthesis of hierarchically porous silicate-1 and ZSM-5 by hydrothermal transformation of SiO2 colloid crystal/carbon composites. Microporous and Mesoporous Materials, 2018, 262: 217–226

    Article  CAS  Google Scholar 

  85. Peng Z, Chen L H, Sun M H, Zhao H, Wang Z, Li Y, Li L Y, Zhou J, Liu Z C, Su B L. A hierarchical zeolitic Murray material with a mass transfer advantage promotes catalytic efficiency improvement. Inorganic Chemistry Frontiers, 2018, 5(11): 2829–2835

    Article  CAS  Google Scholar 

  86. Hou Y X, Li X Y, Sun M H, Li C F, Bakhtiar S H, Lei K, Yu S, Wang Z, Hu Z, Chen L, et al. The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance. Frontiers of Chemical Science and Engineering, 2021, 15(2): 269–278

    Article  CAS  Google Scholar 

  87. Abildstrøm J O, Ali Z N, Mentzel U V, Mielby J, Kegnæs S, Kegnæs M. Mesoporous MEL, BEA, and FAU zeolite crystals obtained by in situ formation of carbon template over metal nanoparticles. New Journal of Chemistry, 2016, 40(5): 4223–4227

    Article  Google Scholar 

  88. Abildstrøm J O, Kegnæs M, Hytoft G, Mielby J, Kegnæs S. Synthesis of mesoporous zeolite catalysts by in situ formation of carbon template over nickel nanoparticles. Microporous and Mesoporous Materials, 2016, 225: 232–237

    Article  Google Scholar 

  89. Wattanakit C, Warakulwit C, Pantu P, Sunpetch B, Charoenpanich M, Limtrakul J. The versatile synthesis method for hierarchical micro- and mesoporous zeolite: an embedded nanocarbon cluster approach. Canadian Journal of Chemical Engineering, 2012, 90(4): 873–880

    Article  CAS  Google Scholar 

  90. Imyen T, Wannapakdee W, Limtrakul J, Wattanakit C. Role of hierarchical micro-mesoporous structure of ZSM-5 derived from an embedded nanocarbon cluster synthesis approach in isomerization of alkenes, catalytic cracking and hydrocracking of alkanes. Fuel, 2019, 254: 115593–115605

    Article  CAS  Google Scholar 

  91. Tao H X, Yang H, Zhang Y H, Ren J W, Liu X H, Wang Y Q, Lu G Z. Space-confined synthesis of nanorod oriented assembled hierarchical MFI zeolite microspheres. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(44): 13821–13827

    Article  CAS  Google Scholar 

  92. Yang H, Yang P P, Liu X H, Wang Y Q. Space-confined synthesis of zeolite Beta microspheres via steam-assisted crystallization. Chemical Engineering Journal, 2016, 299: 112–119

    Article  CAS  Google Scholar 

  93. Huang Y, Ho J, Wang Z, Nakashima P, Hill A J, Wang H T. Mesoporous carbon confined conversion of silica nanoparticles into zeolite nanocrystals. Microporous and Mesoporous Materials, 2009, 117(1–2): 490–496

    Article  CAS  Google Scholar 

  94. Cho S I, Choi S D, Kim J H, Kim G J. Synthesis of ZSM-5 films and monoliths with bimodal micro/mesoscopic structures. Advanced Functional Materials, 2004, 14(1): 49–54

    Article  CAS  Google Scholar 

  95. Tong Y C, Zhao T B, Li F Y, Wang Y. Synthesis of monolithic zeolite Beta with hierarchical porosity using carbon as a transitional template. Chemistry of Materials, 2006, 18(18): 4218–4220

    Article  CAS  Google Scholar 

  96. Martini A, Borfecchia E, Lomachenko K A, Pankin I A, Negri C, Berlier G, Beato P, Falsig H, Bordiga S, Lamberti C. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. Chemical Science (Cambridge), 2017, 8(10): 6836–6851

    Article  CAS  Google Scholar 

  97. Zhao Z C, Yu R, Zhao R R, Shi C, Gies H, Xiao F S, De Vos D, Yokoi T, Bao X H, Kolb U, et al. Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: effects of Na+ ions on the activity and hydrothermal stability. Applied Catalysis B: Environmental, 2017, 217: 421–428

    Article  CAS  Google Scholar 

  98. Zhu P F, Yang G H, Sun J, Fan R, Zhang P P, Yoneyama Y, Tsubaki N. A hollow Mo/HZSM-5 zeolite capsule catalyst: preparation and enhanced catalytic properties in methane dehydroaromatization. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(18): 8599–8607

    Article  CAS  Google Scholar 

  99. Gu J, Zhang Z Y, Ding L P, Huang K, Xue N H, Peng L M, Guo X F, Ding W P. Platinum nanoparticles encapsulated in HZSM-5 crystals as an efficient catalyst for green production of p-aminophenol. Catalysis Communications, 2017, 97: 98–101

    Article  CAS  Google Scholar 

  100. Choi M, Wu Z J, Iglesia E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. Journal of the American Chemical Society, 2010, 132(26): 9129–9137

    Article  CAS  PubMed  Google Scholar 

  101. Wang N, Sun Q M, Bai R S, Li X, Guo G Q, Yu J H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. Journal of the American Chemical Society, 2016, 138(24): 7484–7487

    Article  CAS  PubMed  Google Scholar 

  102. Sánchez-Sánchez M, Manjón Sanz A, Díaz I, Mayoral Á, Sastre E. Micron-sized single-crystal-like CoAPO-5/carbon composites leading to hierarchical CoAPO-5 with both inter-and intracrystal-line mesoporosity. Crystal Growth & Design, 2013, 13(6): 2476–2485

    Article  Google Scholar 

  103. Varzaneh A Z, Towfighi J, Sahebdelfar S. Carbon nanotube templated synthesis of metal containing hierarchical SAPO-34 catalysts: impact of the preparation method and metal avidities in the MTO reaction. Microporous and Mesoporous Materials, 2016, 236: 1–12

    Article  CAS  Google Scholar 

  104. Flores C, Batalha N, Ordomsky V V, Zholobenko V L, Baaziz W, Marcilio N R, Khodakov A Y. Direct production of iso-paraffins from syngas over hierarchical cobalt-ZSM-5 nanocomposites synthetized by using carbon nanotubes as sacrificial templates. ChemCatChem, 2018, 10(10): 2291–2299

    Article  CAS  Google Scholar 

  105. Flores C, Zholobenko V L, Gu B, Batalha N, Valtchev V, Baaziz W, Ersen O, Marcilio N R, Ordomsky V V, Khodakov A Y. Versatile roles of metal species in carbon nanotube templates for the synthesis of metal-zeolite nanocomposite catalysts. ACS Applied Nano Materials, 2019, 2(7): 4507–4517

    Article  CAS  Google Scholar 

  106. Amoo C C, Li M, Noreen A, Fu Y, Maturura E, Du C, Yang R, Gao X, Xing C, Tsubaki N. Fabricating Fe nanoparticles embedded in zeolite Y microcrystals as active catalysts for Fischer-Tropsch synthesis. ACS Applied Nano Materials, 2020, 3(8): 8096–8103

    Article  CAS  Google Scholar 

  107. Chen Y Y, Chang C J, Lee H V, Juan J C, Lin Y C. Gallium-immobilized carbon nanotubes as solid templates for the synthesis of hierarchical Ga/ZSM-5 in methanol aromatization. Industrial & Engineering Chemistry Research, 2019, 58(19): 7948–7956

    Article  CAS  Google Scholar 

  108. Chang C J, Chen C H, Lee J F, Sooknoi T, Lin Y C. Ga-supported MFI zeolites synthesized using carbon nanotubes containing gallium oxide nanoparticles on exterior walls and in interior channels as hard templates for methanol aromatization. Industrial & Engineering Chemistry Research, 2020, 59(24): 11177–11186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21773128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiehong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Du, G., Jia, J. et al. Hierarchically porous zeolites synthesized with carbon materials as templates. Front. Chem. Sci. Eng. 15, 1444–1461 (2021). https://doi.org/10.1007/s11705-021-2090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2090-6

Keywords

Navigation