Skip to main content
Log in

Evaluation of in vitro antioxidant activities of soyasaponins from soy hypocotyls in human HepG2 cell line

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Soyasaponins were shown to have a wide range of biological activities in previous studies; however, the activities of their monomeric compounds are unclear. The aim of this study was to evaluate the in vitro antioxidant activities of soyasaponins in HepG2 cells. Four soyasaponins were isolated from soy hypocotyls and identified as soyasaponin Aa, Ab, Ba, and Bb. The protective effects of these soyasaponins against production of hydrogen peroxide-induced reactive oxygen species in cells were investigated. The cellular antioxidant activity of soyasaponins was found to be in a dose-dependent manner at concentrations ranging between 25 and 400 μg/mL in 24 h. Finally, based on cell morphology observations, group A soyasaponins showed better cellular antioxidant activity and anti-oxidative enzyme activity than group B ones, with an optimal concentration of 100 μg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ames BN, Gold LS (1991) Endogenous mutagens and the causes of aging and cancer. Mutat Res 250(1–2):3–16. doi:10.1016/0027-5107(91)90157-J

    Article  CAS  Google Scholar 

  • Boaventura BCB, Amboni RDMC, Silva EL, Prudencio ES, Pietro PFD, Malta LG et al (2015) Effect of in vitro digestion of yerba mate (Ilex paraguariensis A. St. Hil.) extract on the cellular antioxidant activity, antiproliferative activity and cytotoxicity toward HepG2 cells. Food Res Int 77:257–263. doi:10.1016/j.foodres.2015.05.004

    Article  CAS  Google Scholar 

  • Chen J, Sun S, Zha D, Wu J, Mao L, Deng H et al (2014) Soyasaponins prevent H2O2-induced inhibition of gap junctional intercellular communication by scavenging reactive oxygen species in rat liver cells. Nutr Cancer 66(8):1342–1351. doi:10.1080/01635581.2014.956245

    Article  CAS  Google Scholar 

  • Decroos K, Vincken JP, Koningsveld GA, Gruppen H, Verstraete W (2007) Preparative chromatographic purification and surfactant properties of individual soyasaponins from soy hypocotyls. Food Chem 101:324–333. doi:10.1016/j.foodchem.2006.01.041

    Article  CAS  Google Scholar 

  • Deng S, Tang S, Dai C, Zhou Y, Yang X, Li D et al (2016) P21Waf1/Cip1 plays a critical role in furazolidone-induced apoptosis in HepG2 cells through influencing the caspase-3 activation and ROS generation. Food Chem Toxicol 88:1–12. doi:10.1016/j.fct.2015.12.004

    Article  CAS  Google Scholar 

  • Guang C, Chen J, Sang S, Cheng S (2014) Biological functionality of soyasaponins and soyasapogenols. J Agric Food Chem 62(33):8247–8255. doi:10.1021/jf503047a

    Article  CAS  Google Scholar 

  • Hong SW, Yoo DH, Woo JY, Jeong JJ, Yang JH, Kim DH (2014) Soyasaponins Ab and Bb prevent scopolamine-induced memory impairment in mice without the inhibition of acetylcholinesterase. J Agric Food Chem 62(9):2062–2068. doi:10.1021/jf4046528

    Article  CAS  Google Scholar 

  • Hosny M, Rosazza JP (1999) Novel isoflavone, cinnamic acid, and triterpenoid glycosides in soybean molasses. J Nat Prod 62(6):853–858. doi:10.1021/np980566p

    Article  CAS  Google Scholar 

  • Hosny M, Rosazza JP (2002) New isoflavone and triterpene glycosides from soybeans. J Nat Prod 65(6):805–813. doi:10.1021/np010606g

    Article  CAS  Google Scholar 

  • Hubert J, Berger M, Nepveu F, Paul F, Daydé J (2008) Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem 109:709–721. doi:10.1016/j.foodchem.2007.12.081

    Article  CAS  Google Scholar 

  • Kamo S, Suzuki S, Sato T (2014) Comparison of bioavailability (I) between soyasaponins and soyasapogenols, and (II) between group A and B soyasaponins. Nutrition 30(5):596–601. doi:10.1016/j.nut.2013.10.017

    Article  CAS  Google Scholar 

  • Lee MS, Lee B, Park KE, Utsuki T, Shin T, Oh CW et al (2015) Dieckol enhances the expression of antioxidant and detoxifying enzymes by the activation of Nrf2–MAPK signalling pathway in HepG2 cells. Food Chem 174:538–546. doi:10.1016/j.foodchem.2014.11.090

    Article  CAS  Google Scholar 

  • Li Y, Duan S, Jia H, Bai C, Zhang L, Wang Z (2014) Flavonoids from tartary buckwheat induce G2/M cell cycle arrest and apoptosis in human hepatoma HepG2 cells. Acta Biochim Biophys Sin 46:460–470. doi:10.1093/abbs/gmu023

    Article  CAS  Google Scholar 

  • Lin J, Cheng Y, Wang T, Tang L, Sun Y, Lu X et al (2015) Soyasaponin Ab inhibits lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 30:121–128. doi:10.1016/j.intimp.2015.12.001

    Article  Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S–3485S

    CAS  Google Scholar 

  • Liu R (2013) Health-promoting components of fruits and vegetables in the diet. Adv Nutr 4:384S–392S. doi:10.3945/an.112.003517

    Article  CAS  Google Scholar 

  • Liu L, Guo J, Zhang R, Wei Z, Deng Y, Guo J et al (2015) Effect of degree of milling on phenolic profiles and cellular antioxidant activity of whole brown rice. Food Chem 185:318–325. doi:10.1016/j.foodchem.2015.03.151

    Article  CAS  Google Scholar 

  • Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175. doi:10.1016/j.cbi.2014.10.016

    Article  CAS  Google Scholar 

  • Marrelli M, Cristaldi B, Menichini F, Conforti F (2015) Inhibitory effects of wild dietary plants on lipid peroxidation and on the proliferation of human cancer cells. Food Chem Toxicol 86:16–24. doi:10.1016/j.fct.2015.09.011

    Article  CAS  Google Scholar 

  • Pistollato F, Battino M (2014) Role of plant-based diets in the prevention and regression of metabolic syndrome and neurodegenerative diseases. Trends Food Sci Technol 40(1):62–81. doi:10.1016/j.tifs.2014.07.012

    Article  CAS  Google Scholar 

  • Qiao N, Liu Q, Meng H, Zhao D (2014) Haemolytic activity and adjuvant effect of soyasaponins and some of their derivatives on the immune responses to ovalbumin in mice. Int Immunopharmacol 18(2):333–339. doi:10.1016/j.intimp.2013.12.017

    Article  CAS  Google Scholar 

  • Su D, Ti H, Zhang R, Zhang M, Wei Z, Deng Y et al (2014) Structural elucidation and cellular antioxidant activity evaluation of major antioxidant phenolics in lychee pulp. Food Chem 158:385–391. doi:10.1016/j.foodchem.2014.02.134

    Article  CAS  Google Scholar 

  • Tomar D, Prajapati P, Lavie J, Singh K, Lakshmi S, Bhatelia K et al (2015) TRIM4; a novel mitochondrial interacting RING E3 ligase, sensitizes the cells to hydrogen peroxide (H2O2) induced cell death. Free Radic Biol Med 89:1036–1048. doi:10.1016/j.freeradbiomed.2015.10.425

    Article  CAS  Google Scholar 

  • Vila-Donat P, Fernández-Blanco C, Sagratini G, Font G, Ruiz MJ (2015) Effects of soyasaponin I and soyasaponins-rich extract on the alternariol-induced cytotoxicity on Caco-2 cells. Food Chem Toxicol 77:44–49

    Article  CAS  Google Scholar 

  • Wang T, Choi RC, Li J, Bi CW, Ran W, Chen X et al (2012) Trillin, a steroidal saponin isolated from the rhizomes of Dioscorea nipponica, exerts protective effects against hyperlipidemia and oxidative stress. J Ethnopharmacol 139(1):214–220. doi:10.1016/j.jep.2011.11.001

    Article  CAS  Google Scholar 

  • Wen L, Guo X, Liu RH, You L, Abbasi AM, Fu X (2015) Phenolic contents and cellular antioxidant activity of Chinese hawthorn “Crataegus pinnatifida”. Food Chem 186:54–62. doi:10.1016/j.foodchem.2015.03.017

    Article  CAS  Google Scholar 

  • Wolfe KL, Liu RH (2008) Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. J Agric Food Chem 56(18):8404–8411. doi:10.1021/jf8013074

    Article  CAS  Google Scholar 

  • Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH (2008) Cellular antioxidant activity of common fruits. J Agric Food Chem 56(18):8418–8426. doi:10.1021/jf801381y

    Article  CAS  Google Scholar 

  • Zhao D, Yan M, Huang Y, Sun X (2012) Efficient protocol for isolation and purification of different soyasaponins from soy hypocotyls. J Sep Sci 35(23):3281–3292. doi:10.1002/jssc.201200531

    Article  CAS  Google Scholar 

  • Zhao SS, Yang WN, Jin H, Ma KG, Feng GF (2015) Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. Neurotoxicology 51:166–171. doi:10.1016/j.neuro.2015.10.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant numbers: 31601510 and 31471621), Cultivation Plan for Youth Agricultural Science and Technology Innovative Talents of Liaoning Province (2015001), and the Doctoral Startup Foundation of Bohai University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuying Liu or Tao Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhang, M., Liu, X. et al. Evaluation of in vitro antioxidant activities of soyasaponins from soy hypocotyls in human HepG2 cell line. Chem. Pap. 71, 653–660 (2017). https://doi.org/10.1007/s11696-016-0065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0065-8

Keywords

Navigation