Skip to main content
Log in

Discrimination of black tea fermentation degree based on multi-data fusion of near-infrared spectroscopy and machine vision

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Fermentation is a key step in the production of black tea and has an important impact on the quality of black tea. In this research, the fermentation degree of black tea was evaluated by a portable near-infrared spectrometer and a charge-coupled device camera. A total of 180 samples of black tea were taken at a variety of periods during the fermentation process, and their near-infrared spectra and images were measured. After the analyses of the changes in tea polyphenol and catechin contents measured by ultraviolet spectrophotometry and high-performance liquid chromatography, the fermentation degree for black tea was divided into three stages. Discrimination models based on spectra, images and their data fusion were established through linear discriminant analysis (LDA), random forest (RF) and support vector machine (SVM). Among them, the discrimination model established by successive projections algorithm (SPA) extraction of spectral variables and Pearson correlation analysis extraction of image variables obtained satisfactory results with 100.00% and 95.00% accuracies of the calibration set and prediction set, respectively. The study demonstrated that the middle-level data fusion of near-infrared spectroscopy and machine vision could be employed as a rapid and nondestructive technique to discriminate the fermentation degree of black tea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.G. Shan, M.F. Nisar, M.X. Li, C.H. Zhang, C.P. Wan, Oxidative Med. Cell. Longev. 2021, 6256618 (2021) https://doi.org/10.1155/2021/6256618

  2. H. Zhang, R.L. Qi, Y. Mine, Food Biosci. 29, 55 (2019). https://doi.org/10.1016/j.fbio.2019.03.009

    Article  CAS  Google Scholar 

  3. Z.M. Yan, Y.Z. Zhong, Y.H. Duan, Q.H. Chen, F.N. Li, Anim. Nutr. 6, 115 (2020). https://doi.org/10.1016/j.aninu.2020.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. A. Ben Lagha, D. Grenier, J. Periodont Res. 52, 458 (2017). https://doi.org/10.1111/jre.12411

    Article  CAS  Google Scholar 

  5. K. Chakraborty, A. Dey, A. Bhattacharyya, S.C. Dasgupta, Tissue Cell. 56, 14 (2019). https://doi.org/10.1016/j.tice.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  6. H.C. Liu, Y.J. Xu, J. Wen, K.J. An, J.J. Wu, Y.S. Yu, B. Zou, M.H. Guo, LWT-Food Sci. Technol. 143, 110860 (2021). https://doi.org/10.1016/j.lwt.2021.110860

    Article  CAS  Google Scholar 

  7. H.C. Liu, Y.J. Xu, J.J. Wu, J. Wen, Y.S. Yu, K.J. An, B. Zou, Food Res. Int. 150, 110784 (2021). https://doi.org/10.1016/j.foodres.2021.110784

    Article  CAS  PubMed  Google Scholar 

  8. T. Muthumani, R.S.S. Kumar, Food Chem. 101, 98 (2007). https://doi.org/10.1016/j.foodchem.2006.01.008

    Article  CAS  Google Scholar 

  9. S. Tanmoy, C. Vijayakumar, D. Shrilekha, A. Basu Roy, B. Chandra Ghosh, M. Adinpunya, J. Food Sci. Technol. -Mysore 52, 2387 (2015). https://doi.org/10.1007/s13197-013-1230-5

    Article  CAS  Google Scholar 

  10. L.S. Lee, Y.C. Kim, J.D. Park, Y.B. Kim, S.H. Kim, Food Sci. Biotechnol. 25, 1523 (2016). https://doi.org/10.1007/s10068-016-0236-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y.J. Wang, L.Q. Li, Y. Liu, Q.Q. Cui, J.M. Ning, Z.Z. Zhang, J. Food Eng. 304, 110599 (2021). https://doi.org/10.1016/j.jfoodeng.2021.110599

    Article  CAS  Google Scholar 

  12. G. Jin, Y.J. Wang, L.Q. Li, S.S. Shen, W.W. Deng, Z.Z. Zhang, J.M. Ning, LWT-Food Sci. Technol. 125, 109216 (2020). https://doi.org/10.1016/j.lwt.2020.109216

    Article  CAS  Google Scholar 

  13. H.K. Zhu, F. Liu, Y. Ye, L. Chen, J.Y. Li, A.H. Gu, J.Q. Zhang, C.W. Dong, J. Food Eng. 263, 165 (2019). https://doi.org/10.1016/j.jfoodeng.2019.06.009

    Article  CAS  Google Scholar 

  14. B.H. Tozlu, H.I. Okumus, Automatika 59, 373 (2018). https://doi.org/10.1080/00051144.2018.1550164

    Article  Google Scholar 

  15. S. Ghosh, B. Tudu, N. Bhattacharyya, R. Bandyopadhyay, Neural Comput. Appl. 31, 1165 (2019). https://doi.org/10.1007/s00521-017-3072-y

    Article  Google Scholar 

  16. A. Ghosh, P. Sharma, B. Tudu, S. Sabhapondit, B.D. Baruah, P. Tamuly, N. Bhattacharyya, R. Bandyopadhyay, IEEE Trans. Instrum. Meas. 64, 2720 (2015). https://doi.org/10.1109/tim.2015.2415113

    Article  CAS  Google Scholar 

  17. A. Ghosh, A.K. Bag, P. Sharma, B. Tudu, S. Sabhapondit, B.D. Baruah, P. Tamuly, N. Bhattacharyya, R. Bandyopadhyay, IEEE Sens. J. 15, 6255 (2015). https://doi.org/10.1109/jsen.2015.2455535

    Article  CAS  Google Scholar 

  18. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrog Energy 47, 14319 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  19. P. Mehdizadeh, M. Jamdar, M.A. Mahdi, W.K. Abdulsahib, L.S. Jasim, S.R. Yousefi, M. Salavati-Niasari, Arab. J. Chem. 16, 104579 (2023). https://doi.org/10.1016/j.arabjc.2023.104579

    Article  CAS  Google Scholar 

  20. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, J. Mol. Liq 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  21. G.X. Ren, Y.J. Wang, J.M. Ning, Z.Z. Zhang, Spectroc. Acta Pt. A-Molec. Biomolec Spectr. 230, 118079 (2020). https://doi.org/10.1016/j.saa.2020.118079

    Article  CAS  Google Scholar 

  22. G.X. Ren, S.P. Wang, J.M. Ning, R.R. Xu, Y.X. Wang, Z.Q. Xing, X.C. Wan, Z.Z. Zhang, Food Res. Int. 53, 822 (2013). https://doi.org/10.1016/j.foodres.2012.10.032

    Article  CAS  Google Scholar 

  23. C.W. Dong, Z.Y. Liu, C.S. Yang, T. An, B. Hu, X. Luo, J. Jin, Y. Li, Infrared Phys. Technol. 119, 103934 (2021). https://doi.org/10.1016/j.infrared.2021.103934

    Article  CAS  Google Scholar 

  24. Q.H. Ou, J.M. Li, X.E. Yang, W.Y. Yang, G. Liu, Y.M. Shi, J. Food Process. Preserv 45, e16103 (2021). https://doi.org/10.1111/jfpp.16103

  25. S.S. Zhang, Y.M. Zuo, Q. Wu, J. Wang, L. Ban, H.L. Yang, Z.W. Bai, J. Anal. Methods Chem. 2021, 9563162 (2021) https://doi.org/10.1155/2021/9563162

  26. C.W. Dong, J. Li, J.J. Wang, G.Z. Liang, Y.W. Jiang, H.B. Yuan, Y.Q. Yang, H.W. Meng, Spectroc. Acta Pt. A-Molec. Biomolec Spectr. 205, 227 (2018). https://doi.org/10.1016/j.saa.2018.07.029

    Article  CAS  Google Scholar 

  27. S.M. Chen, C.Y. Wang, C.Y. Tsai, I.C. Yang, S.J. Luo, Y.K. Chuang, Vib. Spectrosc. 115, 103278 (2021). https://doi.org/10.1016/j.vibspec.2021.103278

    Article  CAS  Google Scholar 

  28. S. Borah, M. Bhuyan, Int. J. Food Sci. Technol. 40, 675 (2005). https://doi.org/10.1111/j.1365-2621.2005.00981.x

    Article  CAS  Google Scholar 

  29. C.W. Dong, G.Z. Liang, B. Hu, H.B. Yuan, Y.W. Jiang, H.K. Zhu, J.T. Qi, Sci. Rep. 8, 10535 (2018). https://doi.org/10.1038/s41598-018-28767-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Y.J. Wang, T.H. Li, L.Q. Li, J.M. Ning, Z.Z. Zhang, J. Food Eng. 290, 110181 (2021). https://doi.org/10.1016/j.jfoodeng.2020.110181

    Article  CAS  Google Scholar 

  31. L.Q. Li, Y.J. Wang, S.S. Jin, M.H. Li, Q.S. Chen, J.M. Ning, Z.Z. Zhang, Spectroc. Acta Pt. A-Molec. Biomolec Spectr. 246, 118991 (2021). https://doi.org/10.1016/j.saa.2020.118991

    Article  CAS  Google Scholar 

  32. G. Jin, Y.J. Wang, M.H. Li, T.H. Li, W.J. Huang, L.Q. Li, W.W. Deng, J.M. Ning, Food Chem. 358, 129815 (2021). https://doi.org/10.1016/j.foodchem.2021.129815

    Article  CAS  PubMed  Google Scholar 

  33. H.D. Li, Y.Z. Liang, Q.S. Xu, D.S. Cao, Anal. Chim. Acta 648, 77 (2009). https://doi.org/10.1016/j.aca.2009.06.046

    Article  CAS  PubMed  Google Scholar 

  34. M.C.U. Araujo, T.C.B. Saldanha, R.K.H. Galvao, T. Yoneyama, H.C. Chame, V. Visani, Chemometrics Intell. Lab. Syst. 57, 65 (2001). https://doi.org/10.1016/s0169-7439(01)00119-8

    Article  CAS  Google Scholar 

  35. R. Bro, A.K. Smilde, Anal. Methods 6, 2812 (2014). https://doi.org/10.1039/c3ay41907j

    Article  CAS  Google Scholar 

  36. X. Shu, H.T. Lu, Appl. Intell. 40, 724 (2014). https://doi.org/10.1007/s10489-013-0485-x

    Article  Google Scholar 

  37. Z. Liu, Z.C. Sun, H.J. Wang, IEICE Trans. Inf. Syst. E96D, 739 (2013) https://doi.org/10.1587/transinf.E96.D.739

  38. A.J. Smola, B. Scholkopf, Stat. Comput. 14, 199 (2004). https://doi.org/10.1023/b:Stco.0000035301.49549.88

    Article  Google Scholar 

  39. G.S. Gill, A. Kumar, R. Agarwal, J. Food Eng. 106, 13 (2011). https://doi.org/10.1016/j.jfoodeng.2011.04.013

    Article  Google Scholar 

  40. J. Jelencic, D. Mladenic, Informatica 46, 13 (2022) https://doi.org/10.31449/inf.v46i1.3875

Download references

Acknowledgements

The authors wish to thank the Open Project of Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization (2020KF02), Guangzhou Science and Technology Program Project (202002020079), and Guangdong Province Modern Agricultural Industry Technology System Innovation Team Construction Project with Agricultural Products as the Unit (Tea) (2023KJ120). Qinghua City Science and Technology Plan Project (2022KJJH065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunfang Song or Caijin Ling.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Li, Z., Song, F. et al. Discrimination of black tea fermentation degree based on multi-data fusion of near-infrared spectroscopy and machine vision. Food Measure 17, 4149–4160 (2023). https://doi.org/10.1007/s11694-023-01935-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01935-3

Keywords

Navigation