Skip to main content

Advertisement

Log in

3-Monochloropropane-1,2-diol (3-MCPD): a review on properties, occurrence, mechanism of formation, toxicity, analytical approach and mitigation strategy

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

3-Monochloropropane-1,2-diol (3-MCPD) is one of the most common food contaminants in processed oils which forms mostly during the deodorization step of edible oil refining process. It has been detected in many types of food products such as infant formula, margarine, bread and soy sauce, which could result in kidney and testicular damage. The presence of 3-MCPD contaminant have been occurring for more a decade, which warrants a maximum permissible amount of 2 µg/kg body weight in food products in national and international levels. The purpose of this review is to provide an overview in the past 12 years on its physicochemical properties, occurrence, potential precursors and formation mechanism of 3-MCPD in foodstuffs. The toxicity, its quantification methods and mitigation strategy are also reviewed with an emphasis on the applicability, efficiency and issues encountered during the analysis. This review provides an elucidation regarding 3-MCPDEs and their food safety implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(Adapted from Sulin et al. [18]

Fig. 6

(Adapted from Šmidrkal et al. [48])

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. JECFA, Evaluation of certain contaminants in food, in WHO Technical Report Series (Issue 1002) (2017). http://www.ncbi.nlm.nih.gov/pubmed/29144071

  2. Y.H. Wong, K.M. Goh, K.L. Nyam, I.A. Nehdi, H.M. Sbihi, C.P. Tan, Effects of natural and synthetic antioxidants on changes in 3-MCPD esters and glycidyl ester in palm olein during deep-fat frying. Food Control 96, 488–493 (2018). https://doi.org/10.1016/j.foodcont.2018.10.006

    Article  CAS  Google Scholar 

  3. EFSA, Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA J. (2016). https://doi.org/10.2903/j.efsa.2016.4426

    Article  Google Scholar 

  4. S. MacMahon, J. Beekman, 3-Chloro-1,2-propanediol (3-MCPD), 2-chloro-1,3-propanediol (2-MCPD) and glycidyl esters in infant formula: a review. Curr. Opin. Food Sci. 30, 67–72 (2019). https://doi.org/10.1016/j.cofs.2019.05.005

    Article  Google Scholar 

  5. M.E. Mossoba, M.S.T. Mapa, M. Araujo, Y. Zhao, B. Flannery, T. Flynn, J. Sprando, P. Wiesenfeld, R.L. Sprando, In vitro toxicological assessment of free 3-MCPD and select 3-MCPD esters on human proximal tubule HK-2 cells. Cell Biol. Toxicol. 36(3), 209–221 (2020). https://doi.org/10.1007/s10565-019-09498-0

    Article  CAS  PubMed  Google Scholar 

  6. F. Nazari, P. Naserzadeh, R. Dizaji, H.K. Manjili, H. Bahrami, M. Soleimani, A. Sharafi, Toxicological assessment of contaminant of foodstuff in three different in vitro models: involvement of oxidative stress and cell death signaling pathway. J. Food Sci. (2020). https://doi.org/10.1111/1750-3841.15471

    Article  PubMed  Google Scholar 

  7. EFSA, Update of the risk assessment on 3-monochloropropane diol and its fatty acid esters. EFSA J. 16(1), 1–48 (2018). https://doi.org/10.2903/j.efsa.2018.5083

    Article  CAS  Google Scholar 

  8. K.M. Goh, Y.H. Wong, C.P. Tan, K.L. Nyam, A summary of 2-, 3-MCPD esters and glycidyl ester occurrence during frying and baking processes: baking and frying process contaminants. Curr. Res. Food Sci. 4, 460–469 (2021). https://doi.org/10.1016/j.crfs.2021.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L. Girard, K. Herath, H. Escobar, R. Reimschuesse, O. Ceric, H. Jayasuriya, Development of UHPLC/Q-TOF analysis method to screen. Molecules 26, 2449 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. V.G. Samaras, A. Giri, Z. Zelinkova, L. Karasek, G. Buttinger, T. Wenzl, Analytical method for the trace determination of esterified 3- and 2-monochloropropanediol and glycidyl fatty acid esters in various food matrices. J. Chromatogr. A 1466(September), 136–147 (2016). https://doi.org/10.1016/j.chroma.2016.08.071

    Article  CAS  PubMed  Google Scholar 

  11. P. Yang, J. Hu, J. Liu, Y. Zhang, B. Gao, T.T.Y. Wang, L. Jiang, M. Granvogl, L.L. Yu, Ninety-day nephrotoxicity evaluation of 3-MCPD 1-monooleate and 1-monostearate exposures in male Sprague Dawley rats using proteomic analysis. J. Agric. Food Chem. 68(9), 2765–2772 (2020). https://doi.org/10.1021/acs.jafc.0c00281

    Article  CAS  PubMed  Google Scholar 

  12. C.G. Hamlet, P.A. Sadd, C. Crews, J. Velíšek, D.E. Baxter, Occurrence of 3-chloro-propane-1,2-diol (3-MCPD) and related compounds in foods: a review. Food Addit. Contam. 19(7), 619–631 (2002). https://doi.org/10.1080/0265203021013239

    Article  CAS  PubMed  Google Scholar 

  13. B.Q. Lee, S.M. Khor, 3-Chloropropane-1,2-diol (3-MCPD) in soy sauce: a review on the formation, reduction, and detection of this potential carcinogen. Compr. Rev. Food Sci. Food Saf. 14(1), 48–66 (2015). https://doi.org/10.1111/1541-4337.12120

    Article  CAS  PubMed  Google Scholar 

  14. F.A. Arris, V.T.S. Thai, W.N. Manan, M.S. Sajab, A revisit to the formation and mitigation of 3-chloropropane-1,2-diol in palm oil production. Foods 9(12), 1–24 (2020). https://doi.org/10.3390/foods9121769

    Article  CAS  Google Scholar 

  15. B. Gao, G. Huang, L.L. Yu, Fatty acid esters of 3-monochloropropanediol: a review fatty acid esters of. Annu. Rev. Food Sci. Technol. (2019). https://doi.org/10.1146/annurev-food-032818-121245

    Article  PubMed  Google Scholar 

  16. B. Gao, Y. Li, G. Huang, L. Yu, Fatty acid esters of 3-monochloropropanediol: a review. Annu. Rev. Food Sci. Technol. 10, 259–284 (2019). https://doi.org/10.1146/annurev-food-032818-121245

    Article  CAS  PubMed  Google Scholar 

  17. J.H. Spungen, S. MacMahon, J. Leigh, B. Flannery, G. Kim, S. Chirtel, D. Smegal, Estimated US infant exposures to 3-MCPD esters and glycidyl esters from consumption of infant formula. Food Addit. Contam. A 35(6), 1085–1092 (2018). https://doi.org/10.1080/19440049.2018.1459051

    Article  CAS  Google Scholar 

  18. S.N. Sulin, M.N. Mokhtar, M.A.P. Mohammed, A.S. Baharuddin, Review on palm oil contaminants related to 3-monochloropropane-1, 2-diol (3-MCPD) and glycidyl esters (GE). Food Res. 4, 11–18 (2020). https://doi.org/10.26656/fr.2017.4(S6).051

    Article  Google Scholar 

  19. B. Svejkovská, O. Novotný, V. Divinová, Z. Réblová, M. Doležal, J. Velíšek, Esters of 3-chloropropane-1,2-diol in foodstuffs. Czech J. Food Sci. 22(5), 190–196 (2004). https://doi.org/10.17221/3423-cjfs

    Article  Google Scholar 

  20. S.F. Wong, B.Q. Lee, K.H. Low, H.S. Jenatabadi, C.W.J.B. Wan Mohamed Radzi, S.M. Khor, Estimation of the dietary intake and risk assessment of food carcinogens (3-MCPD and 1,3-DCP) in soy sauces by Monte Carlo simulation. Food Chem. 311(December 2019), 126033 (2020). https://doi.org/10.1016/j.foodchem.2019.126033

    Article  CAS  PubMed  Google Scholar 

  21. H. Xiang, D. Sun-Waterhouse, L. You, C. Cui, W. Wang, Insight into the formation of 3-monochloropropane-1,2-diol in soy sauce in the presence of pancreatin or other exogenous lipases. J. Food Process. Preserv. 43(11), 1–7 (2019). https://doi.org/10.1111/jfpp.14174

    Article  CAS  Google Scholar 

  22. Q. Chai, E. Karangwa, E. Duhoranimana, X. Zhang, S. Xia, J. Yu, Tallow beef flavor: effect of processing conditions and ingredients on 3-chloropropane-1, 2-diol esters generation, and sensory characteristics. Eur. J. Lipid Sci. Technol. (2017). https://doi.org/10.1002/ejlt.201700337

    Article  Google Scholar 

  23. K. Kamikata, E. Vicente, A.P. Arisseto-Bragotto, A.M.R. de Oliveira Miguel, R.F. Milani, S.A.V. Tfouni, Occurrence of 3-MCPD, 2-MCPD and glycidyl esters in extra virgin olive oils, olive oils and oil blends and correlation with identity and quality parameters. Food Control 95(July 2018), 135–141 (2019). https://doi.org/10.1016/j.foodcont.2018.07.051

    Article  CAS  Google Scholar 

  24. J. Kuhlmann, Analysis and occurrence of dichloropropanol fatty acid esters and related process-induced contaminants in edible oils and fats. Eur. J. Lipid Sci. Technol. 118(3), 382–395 (2016). https://doi.org/10.1002/ejlt.201400518

    Article  CAS  Google Scholar 

  25. R. Jedrkiewicz, A. Głowacz, J. Gromadzka, J. Namieśnik, Determination of 3-MCPD and 2-MCPD esters in edible oils, fish oils and lipid fractions of margarines available on Polish market. Food Control 59, 487–492 (2016). https://doi.org/10.1016/j.foodcont.2015.05.039

    Article  CAS  Google Scholar 

  26. A.P. Arisseto, W.C. Silva, G.R. Scaranelo, E. Vicente, 3-MCPD and glycidyl esters in infant formulas from the Brazilian market: occurrence and risk assessment. Food Control 77, 76–81 (2017). https://doi.org/10.1016/j.foodcont.2017.01.028

    Article  CAS  Google Scholar 

  27. J. Leigh, S. MacMahon, Occurrence of 3-monochloropropanediol esters and glycidyl esters in commercial infant formulas in the United States. Food Addit. Contam. A 34(3), 356–370 (2017). https://doi.org/10.1080/19440049.2016.1276304

    Article  CAS  Google Scholar 

  28. R. Jędrkiewicz, A. Głowacz-Różyńska, J. Gromadzka, A. Kloskowski, J. Namieśnik, Indirect determination of MCPD fatty acid esters in lipid fractions of commercially available infant formulas for the assessment of infants’ health risk. Food Anal. Methods 9(12), 3460–3469 (2016). https://doi.org/10.1007/s12161-016-0531-5

    Article  Google Scholar 

  29. L. Wang, Y. Ying, Z. Hu, T. Wang, X. Shen, P. Wu, Simultaneous determination of 2- and 3-MCPD esters in infant formula milk powder by solid-phase extraction and GC–MS analysis. J. AOAC Int. 99(3), 786–791 (2016). https://doi.org/10.5740/jaoacint.15-0310

    Article  CAS  Google Scholar 

  30. U. Ostermeyer, S. Merkle, H. Karl, J. Fritsche, Free and bound MCPD and glycidyl esters in smoked and thermally treated fishery products of the German market. Eur. Food Res. Technol. 247(7), 1757–1769 (2021). https://doi.org/10.1007/s00217-021-03746-6

    Article  CAS  Google Scholar 

  31. H. Karl, S. Merkle, J. Kuhlmann, J. Fritsche, Development of analytical methods for the determination of free and ester bound 2-, 3-MCPD, and esterified glycidol in fishery products. Eur. J. Lipid Sci. Technol. 118(3), 406–417 (2016). https://doi.org/10.1002/ejlt.201400573

    Article  CAS  Google Scholar 

  32. S. Merkle, H. Karl, J. Fritsche, Development of an analytical method for the determination of 2-and 3-MCPD fatty acid esters in fish and fish products, in 12th Euro Fed Lipid Congress “Oils, Fats and Lipids: From Lipodomics to Industrial Innovation”, vol 11, no 11 (2014), pp. 14–17

  33. H.Y. Chung, S.W.C. Chung, B.T.P. Chan, Y.Y. Ho, Y. Xiao, Dietary exposure of Hong Kong adults to fatty acid esters of 3-monochloropropane-1,2-diol. Food Addit. Contam. A 30(9), 1508–1512 (2013). https://doi.org/10.1080/19440049.2013.809628

    Article  CAS  Google Scholar 

  34. A.P. Arisseto, P.F.C. Marcolino, E. Vicente, 3-Monochloropropane-1,2-diol fatty acid esters in commercial deep-fat fried foods. Food Addit. Contam. A 32(9), 1431–1435 (2015). https://doi.org/10.1080/19440049.2015.1071498

    Article  CAS  Google Scholar 

  35. P. Calta, J. Velíšek, M. Doležal, S. Hasnip, C. Crews, Z. Réblová, Formation of 3-chloropropane-1,2-diol in systems simulating processed foods. Eur. Food Res. Technol. 218(6), 501–506 (2004). https://doi.org/10.1007/s00217-003-0865-2

    Article  CAS  Google Scholar 

  36. W.W. Cheng, G.Q. Liu, L.Q. Wang, Z.S. Liu, Glycidyl fatty acid esters in refined edible oils: a review on formation, occurrence, analysis, and elimination methods. Compr. Rev. Food Sci. Food Saf. 16(2), 263–281 (2017). https://doi.org/10.1111/1541-4337.12251

    Article  CAS  PubMed  Google Scholar 

  37. A.H. Ahmad Tarmizi, A. Kuntom, The occurrence of 3-monochloropropane-1,2-diol esters and glycidyl esters in vegetable oils during frying. Crit. Rev. Food Sci. Nutr. (2021). https://doi.org/10.1080/10408398.2020.1865264

    Article  PubMed  Google Scholar 

  38. Z. Huang, D. Xie, Z. Cao, Z. Guo, L. Chen, L. Jiang, X. Sui, Z. Wang, The effects of chloride and the antioxidant capacity of fried foods on 3-chloro-1,2-propanediol esters and glycidyl esters during long-term deep-frying. LWT 145(October 2020), 111511 (2021). https://doi.org/10.1016/j.lwt.2021.111511

    Article  CAS  Google Scholar 

  39. Y.H. Wong, H. Muhamad, F. Abas, O.M. Lai, K.L. Nyam, C.P. Tan, Effects of temperature and NaCl on the formation of 3-MCPD esters and glycidyl esters in refined, bleached and deodorized palm olein during deep-fat frying of potato chips. Food Chem. 219, 126–130 (2017). https://doi.org/10.1016/j.foodchem.2016.09.130

    Article  CAS  PubMed  Google Scholar 

  40. Y.H. Wong, O.M. Lai, F. Abas, K.L. Nyam, I.A. Nehdi, H. Muhamad, C.P. Tan, Factors impacting the formation of 3-MCPD esters and glycidyl esters during deep fat frying of chicken breast meat. J. Am. Oil Chem. Soc. 94(6), 759–765 (2017). https://doi.org/10.1007/s11746-017-2991-1

    Article  CAS  Google Scholar 

  41. A. Stauff, E. Schneider, F. Heckel, 2-MCPD, 3-MCPD and fatty acid esters of 2-MCPD, 3-MCPD and glycidol in fine bakery wares. Eur. Food Res. Technol. 246(10), 1945–1953 (2020). https://doi.org/10.1007/s00217-020-03546-4

    Article  CAS  Google Scholar 

  42. A.A. Martin, E.K. Fodjo, G.B.I. Marc, T. Albert, C. Kong, Simple and rapid detection of free 3-monochloropropane-1,2-diol based on cysteine modified silver nanoparticles. Food Chem. 338(August 2020), 127787 (2021). https://doi.org/10.1016/j.foodchem.2020.127787

    Article  CAS  PubMed  Google Scholar 

  43. O. Kalkan, M. Topkafa, H. Kara, Determination of effect of some parameters on formation of 2-monochloropropanediol, 3-monochloropropanediol and glycidyl esters in the frying process with sunflower oil, by using central composite design. J. Food Compos. Anal. (2020). https://doi.org/10.1016/j.jfca.2020.103681

    Article  Google Scholar 

  44. P.D. Collier, D.D.O. Cromie, A.P. Davies, Mechanism of formation of chloropropanols present in protein hydrolysates. J. Am. Oil Chem. Soc. 68(10), 785–790 (1991). https://doi.org/10.1007/BF02662173

    Article  CAS  Google Scholar 

  45. B. Svejkovská, M. Doležal, J. Velíšek, Formation and decomposition of 3-chloropropane-1,2-diol esters in models simulating processed foods. Czech J. Food Sci. 24(4), 172–179 (2006). https://doi.org/10.17221/3314-cjfs

    Article  Google Scholar 

  46. Z. Zhang, B. Gao, X. Zhang, Y. Jiang, X. Xu, L. Yu, Formation of 3-monochloro-1,2-propanediol (3-MCPD) di- and monoesters from tristearoylglycerol (TSG) and the potential catalytic effect of Fe2+ and Fe3+. J. Agric. Food Chem. 63(6), 1839–1848 (2015). https://doi.org/10.1021/jf5061216

    Article  CAS  PubMed  Google Scholar 

  47. Y. Zhao, Y. Zhang, Z. Zhang, J. Liu, Y.L. Wang, B. Gao, Y. Niu, X. Sun, L. Yu, Formation of 3-MCPD fatty acid esters from monostearoyl glycerol and the thermal stability of 3-MCPD monoesters. J. Agric. Food Chem. 64(46), 8918–8926 (2016). https://doi.org/10.1021/acs.jafc.6b04048

    Article  CAS  PubMed  Google Scholar 

  48. J. Šmidrkal, M. Tesařová, I. Hrádková, M. Berčíková, A. Adamčíková, V. Filip, Mechanism of formation of 3-chloropropan-1,2-diol (3-MCPD) esters under conditions of the vegetable oil refining. Food Chem. 211, 124–129 (2016). https://doi.org/10.1016/j.foodchem.2016.05.039

    Article  CAS  PubMed  Google Scholar 

  49. P. Vispute, S. Dabhade, Refining of palm oil: a review on palm oil refining process, 3-MCPD esters in refined palm oil, and possible reduction tactics for 3-MCPD esters. Int. J. Agric. Eng. 11(Special), 81–85 (2018). https://doi.org/10.15740/has/ijae/11.sp.issue/81-85

    Article  Google Scholar 

  50. A.Y.K. Chung, Crude palm oil de-chlorination. Palm Oil Eng. Bull. 128(1), 51–57 (2016)

    Google Scholar 

  51. S.H. Tiong, N. Saparin, H.F. Teh, T.L.M. Ng, M.Z. Bin Md Zain, B.K. Neoh, A. Md Noor, C.P. Tan, O.M. Lai, D.R. Appleton, Natural organochlorines as precursors of 3-monochloropropanediol esters in vegetable oils. J. Agric. Food Chem. 66(4), 999–1007 (2018). https://doi.org/10.1021/acs.jafc.7b04995

    Article  CAS  PubMed  Google Scholar 

  52. R.G. Tivanello, M.F. Capristo, F.M. Leme, R.A. Ferrari, K.A. Sampaio, A.P. Arisseto, E. Vicente, Mitigation studies based on the contribution of chlorides and acids to the formation of 3-MCPD, 2-MCPD, and glycidyl esters in palm oil. ACS Food Sci. Technol. 1(7), 1190–1197 (2021). https://doi.org/10.1021/acsfoodscitech.1c00084

    Article  CAS  Google Scholar 

  53. S.C. Chew, C.P. Tan, O.M. Lai, K.L. Nyam, Changes in 3-MCPD esters, glycidyl esters, bioactive compounds and oxidation indexes during kenaf seed oil refining. Food Sci. Biotechnol. 27(3), 905–914 (2018). https://doi.org/10.1007/s10068-017-0295-8

    Article  CAS  PubMed  Google Scholar 

  54. Y. Yao, R. Cao, W. Liu, H. Zhou, C. Li, S. Wang, Molecular reaction mechanism for the formation of 3-chloropropanediol esters in oils and fats [research-article]. J. Agric. Food Chem. 67(9), 2700–2708 (2019). https://doi.org/10.1021/acs.jafc.8b06632

    Article  CAS  PubMed  Google Scholar 

  55. S. Wang, G. Liu, W. Cheng, Chloride-mediated co-formation of 3-monochloropropanediol esters and glycidyl esters in both model vegetable oils and chemical model systems. Food Res. Int. 140, 109879 (2020). https://doi.org/10.1016/j.foodres.2020.109879

    Article  CAS  PubMed  Google Scholar 

  56. M.R. Blumhorst, M.W. Collison, Direct determination of glycidyl esters of fatty acids in vegetable oils by LC–MS. J. Am. Oil Chem. Soc. (2011). https://doi.org/10.1007/s11746-011-1873-1

    Article  PubMed  PubMed Central  Google Scholar 

  57. R.I.M. Almoselhy, A review of emerging health risks with 3-MCPD processing contaminant in refined edible oils. J. Microbiol. Biotechnol. (2021). https://doi.org/10.20935/al1360

    Article  Google Scholar 

  58. R.I.M. Almoselhy, M.M. Eid, W.S. Abd El-Baset, A.E.F.A. Aboelhassan, Determination of 3-MCPD in some edible oils using GC-MS/MS. Egypt. J. Chem. 64(3), 1639–1652 (2021). https://doi.org/10.21608/EJCHEM.2021.64084.3373

    Article  Google Scholar 

  59. C. Li, H. Jia, Y. Wang, M. Shen, S. Nie, M. Xie, Determination of 3-monochloropropane-1,2-diol esters in edible oil—method validation and estimation of measurement uncertainty. Food Anal. Methods 9(4), 845–855 (2015). https://doi.org/10.1007/s12161-015-0256-x

    Article  Google Scholar 

  60. World Health Organization, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 77 (World Health Organization, Geneva, 2000)

    Google Scholar 

  61. K. Schultrich, F. Frenzel, A. Oberemm, T. Buhrke, A. Braeuning, A. Lampen, Comparative proteomic analysis of 2-MCPD- and 3-MCPD-induced heart toxicity in the rat. Arch. Toxicol. 91(9), 3145–3155 (2017). https://doi.org/10.1007/s00204-016-1927-0

    Article  CAS  PubMed  Google Scholar 

  62. C.L. Chew, N. Saparin, Principal formation and mitigation strategies for 3-MCPDE in palm oil processing. J. Oil Palm Environ. Health 12, 86–95 (2021). https://doi.org/10.5366/jope.2021.06

    Article  Google Scholar 

  63. S. Genualdi, P. Nyman, L. DeJager, Simultaneous analysis of 3-MCPD and 1,3-DCP in Asian style sauces using QuEChERS extraction and gas chromatography-triple quadrupole mass spectrometry. J. Agric. Food Chem. 65(4), 981–985 (2017). https://doi.org/10.1021/acs.jafc.6b05051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. N. Bergau, Z. Zhao, K. Abraham, B.H. Monien, Metabolites of 2- and 3-monochloropropanediol (2- and 3-MCPD) in humans: urinary excretion of 2-chlorohydracrylic acid and 3-chlorolactic acid after controlled exposure to a single high dose of fatty acid esters of 2- and 3-MCPD. Mol. Nutr. Food Res. 65(4), 1–27 (2020). https://doi.org/10.1002/mnfr.202000736

    Article  CAS  Google Scholar 

  65. German Federal Institute for Risk Assessment, Possible health risks due to high concentrations of 3-MCPD and glycidyl fatty acid esters in certain foods (2020). https://doi.org/10.17590/20200420-134029

  66. K. Schultrich, F. Oez, N. Bergau, T. Buhrke, A. Braeuning, Absorption and metabolism of 3-MCPD in hepatic and renal cell lines. Toxicol. In Vitro 70(October 2020), 105042 (2021). https://doi.org/10.1016/j.tiv.2020.105042

    Article  CAS  PubMed  Google Scholar 

  67. M.E. Mossoba, M.S.T. Mapa, M. Araujo, Y. Zhao, B. Flannery, T. Flynn, J. Sprando, P. Wiesenfeld, R.L. Sprando, Long-term in vitro effects of exposing the human HK-2 proximal tubule cell line to 3-monochloropropane-1,2-diol. J. Toxicol. Sci. 45(1), 45–56 (2020). https://doi.org/10.2131/jts.45.45

    Article  CAS  PubMed  Google Scholar 

  68. J. Lee, H. Lee, S. Lee, H. Seo, K. Lee, Y. Park, 3-MCPD (3-monochloro-1,2-propanediol) inhibit myogenic differentiation in murine skeletal myoblasts. Chem. Biol. Interact. (2020). https://doi.org/10.1016/j.cbi.2020.109311

    Article  PubMed  Google Scholar 

  69. Ç. Sevim, M. Özkaraca, M. Kara, N. Ulaş, A.S. Mendil, D. Margina, A. Tsatsakis, Apoptosis is induced by sub-acute exposure to 3-MCPD and glycidol on Wistar Albino rat brain cells. Environ. Toxicol. Pharmacol. (2021). https://doi.org/10.1016/j.etap.2021.103735

    Article  PubMed  Google Scholar 

  70. G. Huang, Y. Wu, M. Liu, X. Sun, W. Lu, B. Gao, T.T.Y. Wang, L. Yu, Potential biomarkers for early detection of 3-MCPD dipalmitate exposure in Sprague-Dawley rats. J. Agric. Food Chem. 68(35), 9594–9602 (2020). https://doi.org/10.1021/acs.jafc.0c03474

    Article  CAS  PubMed  Google Scholar 

  71. Y.I. Mahmoud, F.S. Abo-Zied, S.T. Salem, Effects of subacute 3-monochloropropane-1,2-diol treatment on the kidney of male albino rats. Biotech. Histochem. 94(3), 199–203 (2018). https://doi.org/10.1080/10520295.2018.1543894

    Article  CAS  PubMed  Google Scholar 

  72. G. Huang, J. Xue, X. Sun, J. Wang, L. Yu, Necroptosis in 3-chloro-1, 2-propanediol (3-MCPD)-dipalmitate-induced acute kidney injury in vivo and its repression by miR-223-3p. Toxicology 406–407(May), 33–43 (2018). https://doi.org/10.1016/j.tox.2018.05.015

    Article  CAS  PubMed  Google Scholar 

  73. Y. Zhong, C. Jin, X. Wang, X. Li, J. Han, W. Xue, P. Wu, X. Peng, X. Xia, Protective effects of apigenin against 3-MCPD-induced renal injury in rat. Chem. Biol. Interact. 296, 9–17 (2018). https://doi.org/10.1016/j.cbi.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  74. H. Xing, B. Fang, G. Pang, F. Ren, 3-Monochloropropane-1, 2-diol causes irreversible damage to reproductive ability independent of hormone changes in adult male rats. Food Chem. Toxicol. (2018). https://doi.org/10.1016/j.fct.2018.11.023

    Article  PubMed  Google Scholar 

  75. M. Liu, J. Liu, Y. Wu, B. Gao, P. Wu, H. Shi, X. Sun, H. Huang, T.T.Y. Wang, L.L. Yu, Preparation of five 3-MCPD fatty acid esters, and the effects of their chemical structures on acute oral toxicity in Swiss mice. J. Sci. Food Agric. 97(3), 841–848 (2016). https://doi.org/10.1002/jsfa.7805

    Article  CAS  PubMed  Google Scholar 

  76. W. Jia, P. Zhuang, Q. Wang, X. Wan, L. Mao, X. Chen, H. Miao, D. Chen, Y. Ren, Y. Zhang, Urinary non-targeted toxicokinetics and metabolic fingerprinting of exposure to 3-monochloropropane-1,2-diol and glycidol from refined edible oils. Food Res. Int. 152(December 2021), 110898 (2022). https://doi.org/10.1016/j.foodres.2021.110898

    Article  CAS  PubMed  Google Scholar 

  77. H. Xing, S. Chen, X. Wang, J. Li, F. Ren, 3-Monochloropropane-1,2-diol causes spermatogenesis failure in male rats via Sertoli cell dysfunction but not testosterone reduction. Toxicol. Lett. 360(January), 1–10 (2022). https://doi.org/10.1016/j.toxlet.2022.01.006

    Article  CAS  PubMed  Google Scholar 

  78. Y. Zhong, D. Sun, Y. Yao, Q. Liu, T. Guo, X. Wang, X. Peng, Autophagy and mitochondrial dynamics contribute to the protective effect of diosgenin against 3-MCPD induced kidney injury. Chem. Biol. Interact. 355(January), 109850 (2022). https://doi.org/10.1016/j.cbi.2022.109850

    Article  CAS  PubMed  Google Scholar 

  79. E. Fröhlich, S. Salar-Behzadi, Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies. Int. J. Mol. Sci. 15(3), 4795–4822 (2014). https://doi.org/10.3390/ijms15034795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. J.L. Hidalgo-Ruiz, R. Romero-González, J.L. Martínez Vidal, A. Garrido Frenich, Determination of 3-monochloropropanediol esters and glycidyl esters in fatty matrices by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A (2021). https://doi.org/10.1016/j.chroma.2021.461940

    Article  PubMed  Google Scholar 

  81. R.A.A. Razak, A. Kuntom, Analytical methods for the determination of 3-MCPD esters in oils/fats. Palm Oil Dev. 57(12), 11–20 (2021)

    Google Scholar 

  82. M. Xu, Z. Jin, Z. Yang, J. Rao, B. Chen, Optimization and validation of in-situ derivatization and headspace solid-phase microextraction for gas chromatography–mass spectrometry analysis of 3-MCPD esters, 2-MCPD esters and glycidyl esters in edible oils via central composite design. Food Chem. 307(May 2019), 125542 (2019). https://doi.org/10.1016/j.foodchem.2019.125542

    Article  CAS  PubMed  Google Scholar 

  83. Z. Zelinkova, A. Giri, T. Wenzl, Assessment of critical steps of a GC/MS based indirect analytical method for the determination of fatty acid esters of monochloropropanediols (MCPDEs) and of glycidol (GEs). Food Control 77, 65–75 (2017). https://doi.org/10.1016/j.foodcont.2017.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. S. Macmahon, E. Mazzola, T.H. Begley, G.W. Diachenko, Analysis of processing contaminants in edible oils. Part 1. Liquid chromatography-tandem mass spectrometry method for the direct detection of 3-monochloropropanediol monoesters and glycidyl esters. J. Agric. Food Chem. 61(20), 4737–4747 (2013). https://doi.org/10.1021/jf4005803

    Article  CAS  PubMed  Google Scholar 

  85. H. Tsai, J. Hsu, C. Fang, N. Su, Determination of glycidyl esters and 3-MCPD esters in edible oils by sample pretreatment with the combination of lipase hydrolysis and modified QuEChERS for GC–MS analysis determination of glycidyl esters and 3-MCPD esters in edible oils by sample. J. Food Drug Anal. 29(1), 153–167 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. R. Jędrkiewicz, A. Głowacz-Różyńska, J. Gromadzka, P. Konieczka, J. Namieśnik, Novel fast analytical method for indirect determination of MCPD fatty acid esters in edible oils and fats based on simultaneous extraction and derivatization. Anal. Bioanal. Chem. 409(17), 4267–4278 (2017). https://doi.org/10.1007/s00216-017-0381-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Y. Zhang, X. Yang, S. Wang, Determination of 2-MCPD and 3-MCPD Fatty Acid Esters in Infant Formula Using an Agilent 8890 GC System with an Agilent 5977B GC/MSD (2021). https://www.agilent.com/cs/library/applications/an-mcpd-infant-formula-8890-gc-5994-3233en-agilent.pdf

  88. B.I. Sim, Y.P. Khor, O.M. Lai, C.B. Yeoh, Y. Wang, Y. Liu, I.A. Nehdi, C.P. Tan, Mitigation of 3-MCPD esters and glycidyl esters during the physical refining process of palm oil by micro and macro laboratory scale refining. Food Chem. 328(March), 127147 (2020). https://doi.org/10.1016/j.foodchem.2020.127147

    Article  CAS  PubMed  Google Scholar 

  89. W.C. Hung, G.J. Peng, W.J. Tsai, M.H. Chang, C.D. Liao, S.H. Tseng, Y.M. Kao, D.Y. Wang, H.F. Cheng, Identification of 3-MCPD esters to verify the adulteration of extra virgin olive oil. Food Addit. Contam. B 10(3), 233–239 (2017). https://doi.org/10.1080/19393210.2017.1330292

    Article  CAS  Google Scholar 

  90. K. Miyazaki, K. Koyama, An improved enzymatic indirect method for simultaneous determinations of 3-MCPD esters and glycidyl esters in fish oils. J. Oleo Sci. 66(10), 1085–1093 (2017). https://doi.org/10.5650/jos.ess17082

    Article  CAS  PubMed  Google Scholar 

  91. K. Miyazaki, K. Koyama, An improved enzymatic indirect method for simultaneous determinations of 3-MCPD esters and glycidyl esters in fish oils. J. Oleo Sci. 1093(10), 1085–1093 (2017)

    Article  Google Scholar 

  92. Y.T. Yaman, G. Bolat, T.B. Saygin, S. Abaci, Molecularly imprinted label-free sensor platform for impedimetric detection of 3-monochloropropane-1,2˗diol. Sens. Actuators B 328(June 20), 128986 (2021). https://doi.org/10.1016/j.snb.2020.128986

    Article  CAS  Google Scholar 

  93. J.A. Custodio-Mendoza, A.M. Carro, M.A. Lage-Yusty, A. Herrero, I.M. Valente, J.A. Rodrigues, R.A. Lorenzo, Occurrence and exposure of 3-monochloropropanediol diesters in edible oils and oil-based foodstuffs from the Spanish market. Food Chem. 270(July 2018), 214–222 (2019). https://doi.org/10.1016/j.foodchem.2018.07.100

    Article  CAS  PubMed  Google Scholar 

  94. J.A. Custodio-Mendoza, R.A. Lorenzo, I.M. Valente, P.J. Almeida, M.A. Lage, J.A. Rodrigues, A.M. Carro, Development of a partitioned liquid–liquid extraction- dispersive solid phase extraction procedure followed by liquid chromatography-tandem mass spectrometry for analysis of 3-monochloropropane-1,2-diol diesters in edible oils. J. Chromatogr. A 1548, 19–26 (2018). https://doi.org/10.1016/j.chroma.2018.03.017

    Article  CAS  PubMed  Google Scholar 

  95. G. Graziani, A. Gaspari, D. Chianese, L. Conte, Direct determination of 3-chloropropanol esters in edible vegetable oils using high resolution mass spectrometry (HRMS-Orbitrap). Food Addit. Contam. A (2017). https://doi.org/10.1080/19440049.2017.1368721

    Article  Google Scholar 

  96. F. Jumaah, R.G. Discovery, R. Jedrkiewicz, J. Gromadzka, Rapid and green separation of mono- and diesters of monochloropropanediols by ultra-high performance supercritical fluid chromatography-mass spectrometry using neat carbon dioxide. J. Agric. Food Chem. (2017). https://doi.org/10.1021/acs.jafc.7b02857

    Article  PubMed  Google Scholar 

  97. R.D. O’Brien, Fats and Oils Processing: Formulating and Processing for Applications, 3rd edn. (CRC Press, 2009)

  98. A. Ermacora, K. Hrncirik, A novel method for simultaneous monitoring of 2-MCPD, 3-MCPD and glycidyl esters in oils and fats. J. Am. Oil Chem. Soc. 90(1), 1–8 (2013). https://doi.org/10.1007/s11746-012-2132-9

    Article  CAS  Google Scholar 

  99. K.S. Hew, Y.P. Khor, T.B. Tan, M.M. Yusoff, O.M. Lai, A.J. Asis, F.A. Alharthi, I.A. Nehdi, C.P. Tan, Mitigation of 3-monochloropropane-1,2-diol esters and glycidyl esters in refined palm oil: a new and optimized approach. LWT 139(November 2020), 110612 (2021). https://doi.org/10.1016/j.lwt.2020.110612

    Article  CAS  Google Scholar 

  100. A.P. Arisseto, W.C. Silva, P.F.C. Marcolino, G.R. Scaranelo, S.A.G. Berbari, A.M.R. de Oliveira Miguel, E. Vicente, Influence of potato cultivar, frying oil and sample pre-treatments on the contamination of French fries by 3-monochloropropane-1,2-diol fatty acid esters. Food Res. Int. 124(April), 43–48 (2019). https://doi.org/10.1016/j.foodres.2018.10.070

    Article  CAS  PubMed  Google Scholar 

  101. R. Tivanello, M. Capristo, E. Vicente, R. Ferrari, K. Sampaio, A. Arisseto, Effects of deodorization temperature and time on the formation of 3-MCPD, 2-MCPD, and glycidyl esters and physicochemical changes of palm oil. J. Food Sci. 85(7), 2255–2260 (2020). https://doi.org/10.1111/1750-3841.15304

    Article  CAS  PubMed  Google Scholar 

  102. Y. Yuan, C. Cui, H. Liu, X. Li, Y. Cao, Y. Zhang, H. Yan, Effects of oxidation and hydrolysis of frying oil on MCPD esters formation in Chinese fried dough sticks. LWT 154, 112576 (2022). https://doi.org/10.1016/j.lwt.2021.112576

    Article  CAS  Google Scholar 

  103. S. Turan, R. Solak, S. Keskin, Investigation of the formation of free and bound 2- and 3-monochloropropane-1,2-diols during deep frying of leavened dough using response surface methodology. Eur. J. Lipid Sci. Technol. 121(7), 1–11 (2019). https://doi.org/10.1002/ejlt.201800019

    Article  CAS  Google Scholar 

  104. M.R. Ramli, A.H.A. Tarmizi, A.N.A. Hammid, R.A.A. Razak, A. Kuntom, S.W. Lin, R. Radzian, Preliminary large scale mitigation of 3-monochloropropane-1, 2-diol (3-MCPD) esters and glycidyl esters in palm oil. J. Oleo Sci. 69(8), 815–824 (2020). https://doi.org/10.5650/jos.ess20021

    Article  CAS  PubMed  Google Scholar 

  105. U. Strijowski, V. Heinz, K. Franke, Removal of 3-MCPD esters and related substances after refining by adsorbent material. Eur. J. Lipid Sci. Technol. 113(3), 387–392 (2011). https://doi.org/10.1002/ejlt.201000323

    Article  CAS  Google Scholar 

  106. E. Restiawaty, A. Maulana, N.T. Umi Culsum, C. Aslan, V. Suendo, N. Nishiyama, Y.W. Budhi, The removal of 3-monochloropropane-1,2-diol ester and glycidyl ester from refined-bleached and deodorized palm oil using activated carbon. RSC Adv. 11(27), 16500–16509 (2021). https://doi.org/10.1039/d1ra00704a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. T. Şahin, S. Ok, E. Yılmaz, Application of MOFs and natural clays for removal of MCPD and GEs from edible oils. Grasas Aceites (2022). https://doi.org/10.3989/gya.0556211

    Article  Google Scholar 

  108. M. Zulkurnain, O.M. Lai, R.A. Latip, I.A. Nehdi, T.C. Ling, C.P. Tan, The effects of physical refining on the formation of 3-monochloropropane-1, 2-diol esters in relation to palm oil minor components. Food Chem. 135(2), 799–805 (2012). https://doi.org/10.1016/j.foodchem.2012.04.144

    Article  CAS  PubMed  Google Scholar 

  109. C. Bertoli, F. Cauville, A.J.H. Schoonman, A deodorized edible oil or fat with low levels of bound MCPD and process of making by carboxymethyl cellulose and/or resin purification (Patent No. WO/2011/009843) (2011). http://patent/WO2011009843A1/id

  110. S.B. Oey, V. Fogliano, Mitigation strategies for the reduction of 2- and 3-MCPD esters and glycidyl esters in the vegetable oil processing industry. Compr. Rev. Food Sci. Food Saf. (2019). https://doi.org/10.1111/1541-4337.12415

    Article  PubMed  Google Scholar 

  111. U.T. Bornscheuer, M. Hesseler, Enzymatic removal of 3-monochloro-1,2-propanediol (3-MCPD) and its esters from oils. Eur. J. Lipid Sci. Technol. 112(5), 552–556 (2010). https://doi.org/10.1002/ejlt.200900245

    Article  CAS  Google Scholar 

  112. R. Bel-Rhlid, J.P. Talmon, L.B. Fay, M.A. Juillerat, Biodegradation of 3-Chloro-1,2-propanediol with Saccharomyces cerevisiae. J. Agric. Food Chem. 52, 6165–6169 (2004). https://doi.org/10.7868/s0869803118010010

    Article  CAS  PubMed  Google Scholar 

  113. Q. Chai, K. Hayat, E. Karangwa, E. Duhoranimana, X. Zhang, S. Xia, J. Yu, Investigating the optimum conditions for minimized 3-chloropropane-1,2-diol esters content and improved sensory attributes during savory beef flavor preparation. Food Chem. 243(May 2017), 96–102 (2018). https://doi.org/10.1016/j.foodchem.2017.09.113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by University Malaya (UM) Impact Oriented Interdisciplinary Research Grant [No. IIRG010B-2019].

Funding

This review was supported by Universiti Malaya, RU Geran-Fakulti Program-GPF015a-2023. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeeb Hayyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed Putra, S.S., Basirun, W.J., Elgharbawy, A.A.M. et al. 3-Monochloropropane-1,2-diol (3-MCPD): a review on properties, occurrence, mechanism of formation, toxicity, analytical approach and mitigation strategy. Food Measure 17, 3592–3615 (2023). https://doi.org/10.1007/s11694-023-01883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01883-y

Keywords

Navigation