Skip to main content
Log in

Swin-MLP: a strawberry appearance quality identification method by Swin Transformer and multi-layer perceptron

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Accurate identifying of strawberry appearance quality is an important step for robot picking in the orchard. The convolutional neural network (CNN) has greatly helped the computer vision tasks such as the identification of fruits. However, better performance of CNN requires more time and computation for training. In order to overcome these shortcomings, a method, named “Swin-MLP”, based on Swin Transformer and multi-layer perceptron (MLP) to identify the strawberry appearance quality is proposed. The proposed method utilizes the Swin Transformer to extract strawberry image features and then import the features into MLP for identifying strawberry. In addition, the performance of combinations of Swin Transformer plus diffident classifiers is evaluated. Furthermore, the proposed Swin-MLP method is compared with original Swin-T and traditional CNN models. The accuracy of the proposed method reaches 98.45%, which is 2.61% higher than original Swin-T model. The required training time of the Swin-MLP only is 16.79 s that is extremely faster than other models. The experiment results show that the Swin-MLP has a good effect on identifying strawberry appearance quality. The success of the proposed method provides a new solution for strawberry quality identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Sun, D. Harishchandra, J. Jia, Q. Zuo, G. Zhang, Q. Wang, J. Yan, W. Zhang, X. Li, Role of Neopestalotiopsis rosae in causing root rot of strawberry in Beijing, China. Crop Prot. 147, 105710 (2021). https://doi.org/10.1016/j.cropro.2021.105710

    Article  Google Scholar 

  2. J.J. Lei, S. Jiang, R.Y. Ma, L. Xue, J. Zhao, H.P. Dai, Current status of strawberry industry in China. Acta Hortic. 1309, 349–352 (2021). https://doi.org/10.17660/ActaHortic.2021.1309.50

    Article  Google Scholar 

  3. Q. Liu, K. Sun, N. Zhao, J. Yang, Y. Zhang, C. Ma, L. Pan, K. Tu, Information fusion of hyperspectral imaging and electronic nose for evaluation of fungal contamination in strawberries during decay. Postharvest Biol. Technol. 153, 152–160 (2019). https://doi.org/10.1016/j.postharvbio.2019.03.017

    Article  Google Scholar 

  4. T.T. Watson, J.W. Noling, J.A. Desaeger, Fluopyram as a rescue nematicide for managing sting nematode (Belonolaimus longicaudatus) on commercial strawberry in Florida. Crop. Prot. 132, 105–108 (2020). https://doi.org/10.1016/j.cropro.2020.105108

    Article  CAS  Google Scholar 

  5. C. Zhang, C. Guo, F. Liu, W. Kong, Y. He, B. Lou, Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. J. Food Eng. 179, 11–18 (2016). https://doi.org/10.1016/j.jfoodeng.2016.01.002

    Article  Google Scholar 

  6. W. Chen, Y. Xu, Z. Zhang, L. Yang, X. Pan, Z. Jia, Mapping agricultural plastic greenhouses using Google Earth images and deep learning. Comput. Electron. Agric. 191, 106552 (2021). https://doi.org/10.1016/j.compag.2021.106552

    Article  Google Scholar 

  7. G. Wang, H. Zheng, X. Zhang, A robust checkerboard corner detection method for camera calibration based on improved YOLOX. Front. Phys-Lausanne. 9, 819019 (2022). https://doi.org/10.3389/fphy.2021.819019

    Article  Google Scholar 

  8. Y. Sun, C. Wang, A computation-efficient CNN system for high-quality brain tumor segmentation. Biomed. Signal. Process. 74, 103475 (2022). https://doi.org/10.1016/j.bspc.2021.103475

    Article  Google Scholar 

  9. R. Zhang, P. Zhao, W. Guo, R. Wang, W. Lu, Medical named entity recognition based on dilated convolutional neural network. Cogn. Robot. 2, 13–20 (2022). https://doi.org/10.1016/j.cogr.2021.11.002

    Article  Google Scholar 

  10. L. Jiao, S. Dong, S. Zhang, C. Xie, H. Wang, AF-RCNN: an anchor-free convolutional neural network for multi-categories agricultural pest detection. Comput. Electron. Agric. 174, 105522 (2020). https://doi.org/10.1016/j.compag.2020.105522

    Article  Google Scholar 

  11. G. Sambasivam, G.D. Opiyo, A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks. Egypt. Inform. J. 22, 27–34 (2021). https://doi.org/10.1016/j.eij.2020.02.007

    Article  Google Scholar 

  12. D. Wang, J. Wang, W. Li, P. Guan, T-CNN: trilinear convolutional neural networks model for visual detection of plant diseases. Comput. Electron. Agric. 190, 106468 (2021). https://doi.org/10.1016/j.compag.2021.106468

    Article  Google Scholar 

  13. J. Yu, X. Ye, H. Li, A high precision intrusion detection system for network security communication based on multi-scale convolutional neural network. Future Gener. Comput. Syst. 129, 399–406 (2021). https://doi.org/10.1016/j.future.2021.10.018

    Article  Google Scholar 

  14. W. Bao, X. Yang, D. Liang, G. Hu, X. Yang, Lightweight convolutional neural network model for field wheat ear disease identification. Comput. Electron. Agric. 189, 106367 (2021). https://doi.org/10.1016/j.compag.2021.106367

    Article  Google Scholar 

  15. I. Indrabayu, N. Arifin, I.S. Areni, Strawberry ripeness classification system based on skin tone color using multi-class support vector machine, in 2019 International Conference on Information and Communications Technology (ICOIACT) (2019), pp. 191–195. https://doi.org/10.1109/icoiact46704.2019.8938457

  16. Q. Jiang, G. Wu, C. Tian, N. Li, H. Yang, Y. Bai, B. Zhang, Hyperspectral imaging for early identification of strawberry leaves diseases with machine learning and spectral fingerprint features. Infrared Phys. Technol. 118, 103898 (2021). https://doi.org/10.1016/j.infrared.2021.103898

    Article  CAS  Google Scholar 

  17. Z. Gao, Y. Shao, G. Xuan, Y. Wang, Y. Liu, X. Han, Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning. Artif. Intell. Agric. 4, 31–38 (2020). https://doi.org/10.1016/j.aiia.2020.04.003

    Article  Google Scholar 

  18. C. Dong, Z. Zhang, J. Yue, L. Zhou, Automatic recognition of strawberry diseases and pests using convolutional neural network. Smart Agric. Technol. 1, 100009 (2021). https://doi.org/10.1016/j.atech.2021.100009

    Article  Google Scholar 

  19. J. Choi, K. Seo, J. Cho, K. Moon, Applying convolutional neural networks to assess the external quality of strawberries. J. Food Compos. Anal. 102, 104071 (2021). https://doi.org/10.1016/j.jfca.2021.104071

    Article  CAS  Google Scholar 

  20. H. Li, M. Sui, F. Zhao, Z. Zha, F. Wu, MVT: mask vision transformer for facial expression recognition in the wild (2021), https://arXiv.org/2106.04520

  21. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, in 31st Conference on Neural Information Processing Systems (NIPS) (2017), pp. 6000–6010

  22. D. Zhou, B. Kang, X. Jin, L. Yang, X. Lian, Z. Jiang, Q. Hou, J. Feng, Deepvit: towards deeper vision transformer (2021), https://arXiv.org/2103.11886

  23. C. Huang, Y. Chen. Adapting pretrained transformer to lattices for spoken language understanding, in 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) (2019), pp. 845–852. https://doi.org/10.1109/ASRU46091.2019.9003825

  24. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-end object detection with transformers, in European Conference on Computer Vision (Springer, Cham, 2020), pp. 845–852. https://doi.org/10.1007/978-3-030-58452-8_13

  25. A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, C. Schmid, ViViT: a video vision transformer (2021), https://arXiv.org/2103.15691

  26. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An image is worth 16x16 words: transformers for image recognition at scale (2021), https://arXiv.org/2010.11929

  27. Z. Liu, Y. Lin, Y. Cao, H. Hu, W. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: hierarchical vision transformer using shifted windows (2021), https://arXiv.org/2103.14030

  28. J. Wang, Z. Zhang, L. Luo, W. Zhu, J. Chen, W. Wang, SwinGD: a robust grape bunch detection model based on Swin Transformer in complex vineyard environment. Horticulturae 7, 492 (2021). https://doi.org/10.3390/horticulturae7110492

    Article  Google Scholar 

  29. H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, M. Wang, Swin-Unet: Unet-like pure transformer for medical image segmentation (2021), https://arXiv.org/2105.05537

  30. F. Del Frate, F. Pacifici, G. Schiavon, C. Solimini, Use of neural networks for automatic classification from high-resolution images. IEEE Trans. Geosci. Remote Sens. 45, 800–809 (2007). https://doi.org/10.1109/TGRS.2007.892009

    Article  Google Scholar 

  31. P. Xu, R. Yang, T. Zeng, J. Zhang, Y. Zhang, Q. Tan, Varietal classification of maize seeds using computer vision and machine learning techniques. J. Food Process. Eng. 44, e13846 (2021). https://doi.org/10.1111/jfpe.13846

    Article  Google Scholar 

  32. C. Zhang, X. Pan, H. Li, A. Gardiner, I. Sargent, J. Hare, P.M. Atkinson, A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS J. Photogramm. 140, 133–144 (2018). https://doi.org/10.1016/j.isprsjprs.2017.07.014

    Article  CAS  Google Scholar 

  33. A. Takahashi, Y. Koda, K. Ito, T. Aoki, Fingerprint feature extraction by combining texture, minutiae, and frequency spectrum using multi-task CNN, in 2020 IEEE International Joint Conference on Biometrics (2020), pp. 1–8. https://doi.org/10.1109/IJCB48548.2020.9304861

  34. H. Zhu, L. Yang, J. Fei, L. Zhao, Z. Han, Recognition of carrot appearance quality based on deep feature and support vector machine. Comput. Electron. Agric. 186, 106185 (2021). https://doi.org/10.1016/j.compag.2021.106185

    Article  Google Scholar 

  35. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in 25th International Conference on Neural Information Processing Systems (2012), pp. 1097–1105. https://doi.org/10.1145/3065386

  36. W. Noble, What is a support vector machine? Nat. Biotechnol. 24, 1565–1567 (2006). https://doi.org/10.1038/nbt1206-1565

    Article  CAS  PubMed  Google Scholar 

  37. M. Pal, Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26, 217–222 (2005). https://doi.org/10.1080/01431160412331269698

    Article  Google Scholar 

  38. A. Perez, P. Larranaga, I. Inza, Supervised classification with conditional Gaussian networks: increasing the structure complexity from naive Bayes. Int. J. Approx. Reason. 43, 1–25 (2006). https://doi.org/10.1016/j.ijar.2006.01.002

    Article  Google Scholar 

  39. G. Guo, H. Wang, D. Bell, Y. Bi, K. Greer, KNN model-based approach in classification, in On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. OTM 2003. Lecture Notes in Computer Science, ed. by R. Meersman, Z. Tari, D.C. Schmidt (2003), pp. 986–996. https://doi.org/10.1007/978-3-540-39964-3_62

  40. A.H. Jahromi, M. Taheri, A non-parametric mixture of Gaussian naive Bayes classifiers based on local independent features, in 2017 Artificial Intelligence and Signal Processing Conference (AISP) (2017), pp. 209–212. https://doi.org/10.1109/AISP.2017.8324083

  41. A. Izenman, Linear discriminant analysis, in Modern Multivariate Statistical Techniques. ed. by A.J. Izenman (Springer, Berlin, 2013), pp. 237–280. https://doi.org/10.1007/978-0-387-78189-1_8

    Chapter  Google Scholar 

  42. S. Bose, A. Pal, R. SahaRay, J. Nayak, Generalized quadratic discriminant analysis. Pattern Recogn. 48, 2676–2684 (2015). https://doi.org/10.1016/j.patcog.2015.02.016

    Article  Google Scholar 

  43. J. Ni, J. Gao, L. Deng, Z. Han, Monitoring the change process of banana freshness by GoogLeNet. IEEE Access (2020), pp. 228369–228376. https://doi.org/10.1109/ACCESS.2020.3045394

  44. R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: visual explanations from deep networks via gradient-based localization, in 2017 IEEE International Conference on Computer Vision (2017), pp. 618–626. https://doi.org/10.1109/ICCV.2017.74

  45. X. Li, C. Cai, H. Zheng, H. Zhu, Recognizing strawberry appearance quality using different combinations of deep feature and classifiers. J Food Process Eng. 45, e13982 (2022). https://doi.org/10.1111/jfpe.13982

    Article  Google Scholar 

  46. D.M. Martínez Gila, J.P. Navarro Soto, S. Satorres Martínez, J. Gómez Ortega, J. Gámez García, The advantage of multispectral images in fruit quality control for extra virgin olive oil production. Food Anal. Method. 15, 75–84 (2022). https://doi.org/10.1007/s12161-021-02099-w

    Article  Google Scholar 

  47. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition (2014), https://arXiv.org/1409.1556

  48. A. Szegedy, W. Liu, Y. Jia, Going deeper with convolutions, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  49. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. Chen, Mobilenetv2: inverted residuals and linear bottlenecks, in Proceedings of the IEEE conference on computer vision and pattern recognition (2018), pp. 4510–4520. https://doi.org/10.1109/CVPR.2018.00474

  50. F. Zhang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, A comprehensive on transfer learning. Proc. IEEE 109, 43–76 (2020). https://doi.org/10.1109/JPROC.2020.3004555

    Article  Google Scholar 

  51. T.T. Nguyen, Q. Vien, H. Sellahewa, An efficient pest classification in smart agriculture using transfer learning. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 8, 1–8 (2021). https://doi.org/10.4108/eai.26-1-2021.168227

    Article  Google Scholar 

  52. L. Zhang, Y. Wen, A transformer-based framework for automatic COVID19 diagnosis in chest CTs, in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 513–518. https://doi.org/10.1109/ICCVW54120.2021.00063

  53. A.J. Bowers, X. Zhou, Receiver operating characteristic (ROC) area under the curve (AUC): a diagnostic measure for evaluating the accuracy of predictors of education outcomes. J. Educ. Stud. Placed Risk 24, 20–46 (2019). https://doi.org/10.1080/10824669.2018.1523734

    Article  Google Scholar 

  54. L. Van der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  55. Y. Chen, W. Lee, H. Gan, N. Peres, C. Fraisse, Y. Zhang, Y. He, Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages. Remote Sens-Basel. 11, 1584 (2019). https://doi.org/10.3390/rs11131584

    Article  Google Scholar 

  56. D. Zhang, Y. Xu, W. Huang, X. Tian, Y. Xia, L. Xu, S. Fan, Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm. Infrared Phys. Technol. 98, 297–304 (2019). https://doi.org/10.1016/j.infrared.2019.03.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is partly supported by Natural Science Basic Research Program of Shaanxi (Program No. 2022JM-318) and President's Fund of Xi'an Technological University (No. XGPY200216).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [HZ], Data Curation: [HZ, GW]; Formal Analysis: [HZ]; Investigation: [HZ]; Methodology: [HZ]; Resources: [HZ, GW]; Software: [HZ]; Validation: [HZ, GW, XL]; Visualization: [HZ, XL]; Writing – Original Draft Preparation: [HZ]. Funding Acquisition: [GW]; Supervision: [GW]; Writing – Review & Editing [GW, XL].

Corresponding author

Correspondence to Guohui Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Wang, G. & Li, X. Swin-MLP: a strawberry appearance quality identification method by Swin Transformer and multi-layer perceptron. Food Measure 16, 2789–2800 (2022). https://doi.org/10.1007/s11694-022-01396-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01396-0

Keywords

Navigation