Skip to main content
Log in

Modification by lipophilic substitution of Mexican Oxalis tuberosa starch and its effect on functional and microstructural properties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of this work was to study the influence of chemical modification of Mexican Oxalis tuberosa starch by lipophilic substitution using OSA (2-octenyl-1-succinic anhydride) on its degree of substitution (DS), color, particle size (CILAS), microstructural and functional properties. The modified starches showed a dose-dependent relationship for DS with respect to the used OSA concentration (0.0167 for 2% and 0.0076 for 0.25%), as well as an increase in the % of succinic groups (from 0.983 to 2.126); high substitution efficiency is associated with the amorphous region formed by amylose, where esterification with OSA and some amylopectin branching points is suggested. An improvement in modified starch (MS1-MS5) functional properties was observed with respect to the native starch (NSO) due to the lipophilic substitution with OSA, which is generated on the molecular structure of starch. The whiteness for modified starch (MS1 to MS5) was higher (91.94–89.84%) than to native starch (87.90%). Microstructural characterization by SEM and CILAS showed starches with ovoid shape and increase in roughness (as the DS increased), the ellipse relationship trend to increasing as the DS increased (2.30–3.26), while the Feret diameter showed an inverse relationship (30.64–25.53), due to OSA chemical modifications. Modified starches of Oxalis tuberosa generated an improvement in their physicochemical, microstructural, and functional properties with respect to the native starch. These properties could be used in the food and pharmaceutical industries in gel formation, encapsulation, emulsification, films, and coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Majzoobi, A. Farahnaky, Granular cold-water swelling starch; properties, preparation and applications, a review. Food Hydrocoll. 111, 106393 (2021). https://doi.org/10.1016/j.foodhyd.2020.106393

    Article  CAS  Google Scholar 

  2. S. Ekramian, H. Abbaspour, B. Roudi, L. Amjad, A.M. Nafchi, An experimental study on characteristics of sago starch film treated with methanol extract from Artemisia sieberi Besser. J. Food Meas. Charact. 15, 3298–3306 (2021). https://doi.org/10.1007/s11694-021-00895-w

    Article  Google Scholar 

  3. E. Arezoo, E. Mohammadreza, M. Maryam, M.N. Abdorreza, The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int. J. Biol. Macromol. 157, 743–751 (2020). https://doi.org/10.1016/J.IJBIOMAC.2019.11.244

    Article  CAS  PubMed  Google Scholar 

  4. M. Wei, R. Andersson, G. Xie, S. Salehi, D. Boström, S. Xiong, Properties of cassava stem starch being a new starch resource. Starch/Staerke 70, 1–25 (2018). https://doi.org/10.1002/star.201700125

    Article  CAS  Google Scholar 

  5. A. Tessema, H. Admassu, Extraction and characterization of starch from anchote (Coccinia abyssinica): physico-chemical, functional, morphological and crystalline properties. J. Food Meas. Charact. 154, 3096–3110 (2021). https://doi.org/10.1007/S11694-021-00885-Y

    Article  Google Scholar 

  6. L.C. Núñez-Bretón, L.C. Cruz-Rodríguez, M.L. Tzompole-Colohua, J. Jiménez-Guzmán, M.J. de Perea-Flores, W. Rosas-Flores, F.E. González-Jiménez, Physicochemical, functional and structural characterization of Mexican Oxalis tuberosa starch modified by cross-linking. J. Food Meas. Charact. 13, 2862–2870 (2019). https://doi.org/10.1007/s11694-019-00207-3

    Article  Google Scholar 

  7. A.N. Hernández-Lauzardo, G. Méndez-Montealvo, M.G. Velázquez Del Valle, J. Solorza-Feria, L.A. Bello-Pérez, Isolation and partial characterization of Mexican Oxalis tuberosa starch. Starch/Staerke 56, 357–363 (2004). https://doi.org/10.1002/star.200300235

    Article  CAS  Google Scholar 

  8. R. Zhang, T. Belwal, L. Li, X. Lin, Y. Xu, Z. Luo, Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: a review. Carbohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2020.116388

    Article  PubMed  PubMed Central  Google Scholar 

  9. H.X. Zia-ud-Din, P. Fei, Physical and chemical modification of starches: a review. Crit. Rev. Food Sci. Nutr. 57, 2691–2705 (2017). https://doi.org/10.1080/10408398.2015.1087379

    Article  CAS  PubMed  Google Scholar 

  10. H. Chen, Z. Hu, D. Liu, C. Li, S. Liu, Composition and physicochemical properties of three Chinese Yam (Dioscorea opposita Thunb) starches: a comparison study. Molecules 24, 1–14 (2019). https://doi.org/10.3390/molecules24162973

    Article  CAS  Google Scholar 

  11. M.M.A. Rashed, A.A. Mahdi, A.D.S. Ghaleb, F.R. Zhang, D. YongHua, W. Qin, Z. WanHai, Synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier, and sonocavitation treatment in fabricating of Lavandula angustifolia essential oil nanoparticles. Int. J. Biol. Macromol. 151, 702–712 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.224

    Article  CAS  PubMed  Google Scholar 

  12. R. Bajaj, N. Singh, A. Kaur, Properties of octenyl succinic anhydride (OSA) modified starches and their application in low fat mayonnaise. Int. J. Biol. Macromol. 131, 147–157 (2019). https://doi.org/10.1016/J.IJBIOMAC.2019.03.054

    Article  CAS  PubMed  Google Scholar 

  13. S. Zhao, G. Tian, C. Zhao, C. Lu, Y. Bao, X. Liu, J. Zheng, Emulsifying stability properties of octenyl succinic anhydride (OSA) modified waxy starches with different molecular structures. Food Hydrocoll. 85, 248–256 (2018). https://doi.org/10.1016/J.FOODHYD.2018.07.029

    Article  CAS  Google Scholar 

  14. B.B.S. de la Concha, E. Agama-Acevedo, A. Agurirre-Cruz, L.A. Bello-Pérez, J. Alvarez-Ramírez, OSA esterification of amaranth and maize starch nanocrystals and their use in “Pickering” emulsions. Starch - Stärke. 72, 1900271 (2020). https://doi.org/10.1002/STAR.201900271

    Article  Google Scholar 

  15. J.A. Han, J.N. BeMiller, Preparation and physical characteristics of slowly digesting modified food starches. Carbohydr. Polym. 67, 366–374 (2007). https://doi.org/10.1016/j.carbpol.2006.06.011

    Article  CAS  Google Scholar 

  16. R. Bhosale, R. Singhal, Effect of octenylsuccinylation on physicochemical and functional properties of waxy maize and amaranth starches. Carbohydr. Polym. 68, 447–456 (2007). https://doi.org/10.1016/j.carbpol.2006.11.011

    Article  CAS  Google Scholar 

  17. H.A. Fonseca-Florido, F. Soriano-Corral, R. Yañez-Macías, P. González-Morones, F. Hernández-Rodríguez, J. Aguirre-Zurita, C. Ávila-Orta, J. Rodríguez-Velázquez, Effects of multiphase transitions and reactive extrusion on in situ thermoplasticization/succination of cassava starch. Carbohydr. Polym. 225, 115250 (2019). https://doi.org/10.1016/j.carbpol.2019.115250

    Article  CAS  PubMed  Google Scholar 

  18. ISO, Rice-- Determination of amylose content-- Part 1: Referencen method, 2007.

  19. J. Alvarez-Ramirez, E.J. Vernon-Carter, H. Carrillo-Navas, M. Meraz, Effects of cooking temperature and time on the color, morphology, crystallinity, thermal properties, starch-lipid complexes formation and rheological properties of roux. LWT: Food Sci. Technol. 91, 203–212 (2018). https://doi.org/10.1016/j.lwt.2018.01.038

    Article  CAS  Google Scholar 

  20. R.E. Larraín, D.M. Schaefer, J.D. Reed, Use of digital images to estimate CIE color coordinates of beef. Food Res. Int. 41, 380–385 (2008). https://doi.org/10.1016/j.foodres.2008.01.002

    Article  Google Scholar 

  21. A. Ali, T.A. Wani, I.A. Wani, F.A. Masoodi, Comparative study of the physico-chemical properties of rice and corn starches grown in Indian temperate climate. J. Saudi Soc. Agric. Sci. 15, 75–82 (2016). https://doi.org/10.1016/j.jssas.2014.04.002

    Article  Google Scholar 

  22. S. Li, C. Li, Y. Yang, X. He, B. Zhang, X. Fu, C.P. Tan, Q. Huang, Starch granules as Pickering emulsifiers: Role of octenylsuccinylation and particle size. Food Chem. 283, 437–444 (2019). https://doi.org/10.1016/j.foodchem.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  23. M. Rayner, A. Timgren, M. Sjöö, P. Dejmek, Quinoa starch granules: A candidate for stabilising food-grade Pickering emulsions. J. Sci. Food Agric. 92, 1841–1847 (2012). https://doi.org/10.1002/jsfa.5610

    Article  CAS  PubMed  Google Scholar 

  24. J. Jiménez-Guzmán, D.E. Leyva-daniel, B.H. Camacho-díaz, A.R. Jimenéz-aparicio, spray drying of xoconostle juice : interaction of microstructure, function, and drying operation conditions. In: I.J.R. del Olvera (Ed.), Sustain. Dry. Technol., IntechOpen, pp. 79–94. https://doi.org/10.5772/63723. (2016)

  25. M.C. Sweedman, M.J. Tizzotti, C. Schäfer, R.G. Gilbert, Structure and physicochemical properties of octenyl succinic anhydride modified starches: a review. Carbohydr. Polym. 92, 905–920 (2013). https://doi.org/10.1016/j.carbpol.2012.09.040

    Article  CAS  PubMed  Google Scholar 

  26. N.F.Z. Abiddin, A. Yusoff, N. Ahmad, Effect of octenylsuccinylation on physicochemical, thermal, morphological and stability of octenyl succinic anhydride (OSA) modified sago starch. Food Hydrocoll. 75, 138–146 (2018). https://doi.org/10.1016/j.foodhyd.2017.09.003

    Article  CAS  Google Scholar 

  27. C.A. Bello-Flores, M.C. Nuñez-Santiago, M.F.S. Martín-Gonzalez, J.N. BeMiller, L.A. Bello-Pérez, Preparation and characterization of octenylsuccinylated plantain starch. Int. J. Biol. Macromol. 70, 334–339 (2014). https://doi.org/10.1016/J.IJBIOMAC.2014.06.061

    Article  CAS  PubMed  Google Scholar 

  28. F.F. Velásquez-Barreto, L.A. Bello-Pérez, H. Yee-Madeira, J. Alvarez-Ramirez, C.E. Velezmoro-Sánchez, Effect of the OSA esterification of oxalis tuberosa starch on the physicochemical. Mol. Emuls. Properties Starch-Stärke. 72, 1900305 (2020). https://doi.org/10.1002/STAR.201900305

    Article  Google Scholar 

  29. I.R. Zahib, P. Md Tahir, M. Talib, R. Mohamad, A.H. Alias, S.H. Lee, Effects of degree of substitution and irradiation doses on the properties of hydrogel prepared from carboxymethyl-sago starch and polyethylene glycol. Carbohydr. Polym. 252, 117224 (2021). https://doi.org/10.1016/J.CARBPOL.2020.117224

    Article  CAS  PubMed  Google Scholar 

  30. R.F.N. Quadrado, A.R. Fajardo, Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems. Arab. J. Chem. 13, 2183–2194 (2020). https://doi.org/10.1016/J.ARABJC.2018.04.004

    Article  CAS  Google Scholar 

  31. S. Simsek, M. Ovando-Martinez, A. Marefati, M. Sj, M. Rayner, Chemical composition, digestibility and emulsification properties of octenyl succinic esters of various starches. Food Res. Int. 75, 41–49 (2015). https://doi.org/10.1016/j.foodres.2015.05.034

    Article  CAS  PubMed  Google Scholar 

  32. S. Liang, Y. Hong, Z. Gu, L. Cheng, C. Li, Z. Li, Effect of debranching on the structure and digestibility of octenyl succinic anhydride starch nanoparticles. LWT. 141, 111076 (2021). https://doi.org/10.1016/J.LWT.2021.111076

    Article  CAS  Google Scholar 

  33. M. Lopez-Silva, L.A. Bello-Perez, E. Agama-Acevedo, J. Alvarez-Ramirez, Effect of amylose content in morphological, functional and emulsification properties of OSA modified corn starch. Food Hydrocoll. 97, 105212 (2019). https://doi.org/10.1016/J.FOODHYD.2019.105212

    Article  CAS  Google Scholar 

  34. A. Totosaus, I.A. Godoy, T.J. Ariza-Ortega, Structural and mechanical properties of edible films from composite mixtures of starch, dextrin and different types of chemically modified starch. Int. J. Polym. Anal. Charact. 25, 517–528 (2020). https://doi.org/10.1080/1023666X.2020.1812937

    Article  CAS  Google Scholar 

  35. V. Sant’Anna, P.D. Gurak, L.D.F. Marczak, I.C. Tessaro, Tracking bioactive compounds with colour changes in foods:a review. Dye. Pigment. 98, 601–608 (2013). https://doi.org/10.1016/j.dyepig.2013.04.011

    Article  CAS  Google Scholar 

  36. R.E. Wrolstad, D.E. Smith, Color Analysis (Springer, Cham, 2017), pp. 545–555

    Google Scholar 

  37. N. Singh, K. Shevkani, A. Kaur, S. Thakur, N. Parmar, A.S. Virdi, Characteristics of starch obtained at different stages of purification during commercial wet milling of maize. Starch-Stärke. 66, 668–677 (2014). https://doi.org/10.1002/STAR.201300261

    Article  CAS  Google Scholar 

  38. J. Milani, G. Maleki, Hydrocolloids in food industry. Food Ind. Process. Methods Equip. (2012). https://doi.org/10.5772/32358

    Article  Google Scholar 

  39. L.A. Bello-Pérez, S.M. Contreras-Ramos, R. Romero-Manilla, J. Solorza-Feria, A. Jiménez-Aparicio, Propiedades químicas y funcionales del almidón modificado de plátano musa paradisiaca L (Var Macho). Agrocencia. 36, 169–180 (2002)

    Google Scholar 

  40. P.J. Jenkins, A.M. Donald, Gelatinisation of starch: A combined SAXS/WAXS/DSC and SANS study. Carbohydr. Res. 308, 133–147 (1998). https://doi.org/10.1016/S0008-6215(98)00079-2

    Article  CAS  Google Scholar 

  41. S. Wang, L. Copeland, Effect of acid hydrolysis on starch structure and functionality: a review. Food Sci. Nutr. 55, 1081–1097 (2015). https://doi.org/10.1080/10408398.2012.684551

    Article  CAS  Google Scholar 

  42. J. Zhang, C. Ran, X. Jiang, J. Dou, Impact of octenyl succinic anhydride (OSA) esterification on microstructure and physicochemical properties of sorghum starch. LWT. 152, 112320 (2021). https://doi.org/10.1016/J.LWT.2021.112320

    Article  CAS  Google Scholar 

  43. G. Li, X. Xu, F. Zhu, Physicochemical properties of dodecenyl succinic anhydride (DDSA) modified quinoa starch. Food Chem. 300, 125201 (2019). https://doi.org/10.1016/J.FOODCHEM.2019.125201

    Article  CAS  PubMed  Google Scholar 

  44. H. Han, H. Zhang, E. Li, C. Li, P. Wu, Structural and functional properties of OSA-starches made with wide-ranging hydrolysis approaches. Food Hydrocoll. 90, 132–145 (2019). https://doi.org/10.1016/j.foodhyd.2018.12.011

    Article  CAS  Google Scholar 

  45. Y. Zhao, N. Khalid, M. Nakajima, Fabrication and characterization of dodecenyl succinic anhydride modified kudzu starch. Starch-Stärke. 14, 2100188 (2021). https://doi.org/10.1002/STAR.202100188

    Article  Google Scholar 

  46. C. Li, X. Fu, F. Luo, Q. Huang, Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch. Food Hydrocoll. 32, 79–86 (2013). https://doi.org/10.1016/j.foodhyd.2012.12.004

    Article  CAS  Google Scholar 

  47. A.G. Estrada-Fernández, G. Dorantes-Bautista, A. Román-Guerrero, R.G. Campos-Montiel, J.P. Hernández-Uribe, R. Jiménez-Alvarado, Modification of Oxalis tuberosa starch with OSA, characterization and application in food-grade Pickering emulsions. J. Food Sci. Technol. (2020). https://doi.org/10.1007/s13197-020-04790-y

    Article  PubMed  Google Scholar 

  48. R.C. Dariva, D. Bucior, R. Colet, I.A. Fernandes, G.S. Hassemer, S.P.S. Miotto, R.L. Cansian, J. Zeni, G.T. Backes, E. Valduga, Techno-functional properties of cheese breads with native and modified cassava starch produced in an industrial system. Starch/Staerke 2000116, 2–8 (2021). https://doi.org/10.1002/star.202000116

    Article  CAS  Google Scholar 

  49. W. Wang, H. Wang, X. Jin, H. Wang, T. Lin, Z. Zhu, Effects of hydrogen bonding on starch granule dissolution, spinnability of starch solution, and properties of electrospun starch fibers. Polymer (Guildf). 153, 643–652 (2018). https://doi.org/10.1016/j.polymer.2018.08.067

    Article  CAS  Google Scholar 

  50. H. Xiao, S. Wang, W. Xu, Y. Yin, D. Xu, L. Zhang, G.Q. Liu, F. Luo, S. Sun, Q. Lin, B. Xu, The study on starch granules by using darkfield and polarized light microscopy. J. Food Compos. Anal. 92, 103576 (2020). https://doi.org/10.1016/j.jfca.2020.103576

    Article  CAS  Google Scholar 

  51. S. Dražić, N. Sladoje, J. Lindblad, Estimation of Feret’s diameter from pixel coverage representation of a shape. Pattern Recognit. Lett. 80, 37–45 (2016). https://doi.org/10.1016/j.patrec.2016.04.021

    Article  Google Scholar 

  52. I.P. Morales, R.R. Valera, C.R. Morfa, M.M. de Farias, Dense packing of general-shaped particles using a minimization technique. Comput. Part. Mech. 4, 165–179 (2017). https://doi.org/10.1007/s40571-016-0103-x

    Article  Google Scholar 

  53. J. Wang, L. Su, S. Wang, Physicochemical properties of octenyl succinic anhydride-modified potato starch with different degrees of substitution. J. Sci. Food Agric. 90, 424–429 (2010). https://doi.org/10.1002/JSFA.3832

    Article  CAS  PubMed  Google Scholar 

  54. W. Zhang, J. Gu, Z. Wang, C. Wei, J. Yang, J. Zhang, Comparison of structural and functional properties of wheat starch under different soil drought conditions. Sci. Rep. 7, 1–18 (2017). https://doi.org/10.1038/s41598-017-10802-3

    Article  CAS  Google Scholar 

  55. Y.I. Cornejo-Ramírez, O. Martínez-Cruz, C.L. Del Toro-Sánchez, F.J. Wong-Corral, J. Borboa-Flores, F.J. Cinco-Moroyoqui, The structural characteristics of starches and their functional properties. CYTA: J. Food. 16, 1003–1017 (2018). https://doi.org/10.1080/19476337.2018.1518343

    Article  CAS  Google Scholar 

  56. A. Marefati, B. Wiege, N.U. Haase, M. Matos, M. Rayner, Pickering emulsifiers based on hydrophobically modified small granular starches. Part I: manufacturing and physico-chemical characterization. Carbohydr. Polym. 175, 473–483 (2017). https://doi.org/10.1016/j.carbpol.2017.07.044

    Article  CAS  PubMed  Google Scholar 

  57. R. Carmona-Garcia, M.M. Sanchez-Rivera, G. Méndez-Montealvo, B. Garza-Montoya, L.A. Bello-Pérez, Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca). Carbohydr. Polym. 76, 117–122 (2009). https://doi.org/10.1016/j.carbpol.2008.09.029

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MJPF and FEGJ; methodology, KLML, GVV, and MJPF; validation, LCNB, YCSG, and FEGJ; formal analysis, LCNB and JJG; investigation, GVV and LAB; resources, MJPF and LAB; data curation, MJPF and YCSG; writing—original draft preparation, KLML; writing—review and editing, LAB and FEGJ; visualization, YCSG; supervision, FEGJ; project administration, JJG and FEGJ; funding acquisition, FEGJ All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Francisco Erik González-Jiménez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perea-Flores, M.J., Martínez-Luna, K.L., Núñez-Bretón, L.C. et al. Modification by lipophilic substitution of Mexican Oxalis tuberosa starch and its effect on functional and microstructural properties. Food Measure 16, 1062–1072 (2022). https://doi.org/10.1007/s11694-021-01233-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01233-w

Keywords

Navigation