Skip to main content
Log in

Efficiency of chemical composition of some essential oils against Botrytis cinerea, the pathogen of post-harvest strawberry fruits

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Essential oils (EOs) have drawn growing attention due to an increased risk of chemical contamination upon the application of synthetic fungicides to post-harvest fruits. This experiment investigated the antifungal activity of seven EOs at different concentrations of 0.5, 1, 2, 4, 6, 8, and 10 μL mL−1 against the fungus Botrytis cinerea in two methods of liquid and vapor phase. Besides the chemical analysis of the EOs by GC–MS, minimum fungicidal concentration, minimum inhibitory concentration, and the release of cellular material were investigated. The dominant compound in rosemary EO is camphene (33.8%), whereas 1–8 cineole (67.61%) was found to be most abundant in Eucalyptus. Cumin contained cumin aldehyde (27.14%), peppermint EO contained menthol (28.27%), and the most common compound in tarragon EO was methyl chavicol (78.74%). Limonene (63.27%) was the predominant compound in lemon EO. The highest percentage of compounds in savory EO was carvacrol (50.33). The results showed that the vapor phase was consistently more effective in fungal growth than the liquid phase effect. Savory and peppermint EOs were very influential on the growth of B. cinerea at relatively low concentrations due to the presence of dominant compounds such as menthol (28.27%) and carvacrol (50.34%). According to the comparison of the data on inhibition percentage with the control group, there was a significant enhancement in the entire liquid and vapor phases by increasing EO concentration. Generally, factors such as plant species, application method, and concentration affect EOs antifungal activity. It is concluded that the EO mechanism against B. cinerea might be due to its effect on cell membrane permeability according to the electrolytes’ leakage. Therefore, these EOs as natural antimicrobial compounds seem to be effective in preventing gray mold contamination instead of synthetic preservatives, which have several established adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.P. Zubrod, M. Bundschuh, G. Arts, C.A. Brühl, G. Imfeld, A. Knäbel, S. Payraudeau, J.J. Rasmussen, J. Rohr, A. Scharmüller, Environ. Sci. Technol. 53, 3347–3365 (2019). https://doi.org/10.1021/acs.est.8b04392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. N. Zamindar, M. Sadrarhami, M. Doudi, Food Meas. 10(3), 589–594 (2016). https://doi.org/10.1007/s11694-016-9341-0

    Article  Google Scholar 

  3. M. Farzaneh, H. Kiani, R. Sharifi, M. Reisi, J. Hadian, Postharvest Biol. Technol. 109, 145–151 (2015). https://doi.org/10.1016/j.postharvbio.2015.06.014

    Article  CAS  Google Scholar 

  4. M.M. Marvizadeh, A. Tajik, V. Moosavian, N. Oladzadabbasabadi, A. Mohammadi Nafchi, J. Chem. Health Risk (2020). https://doi.org/10.22034/jchr.2020.1900584.1135

    Article  Google Scholar 

  5. S. Jafarzadeh, A.M. Nafchi, A. Salehabadi, N. Oladzad-abbasabadi, S.M. Jafari, Adv. Colloid Interface Sci. (2021). https://doi.org/10.1016/j.cis.2021.102405

    Article  PubMed  Google Scholar 

  6. S. Jafarzadeh, A. Salehabadi, A. Mohammadi Nafchi, N. Oladzadabbasabadi, S.M. Jafari, Trends Food Sci. Technol. 116, 218–231 (2021). https://doi.org/10.1016/j.tifs.2021.07.021

    Article  CAS  Google Scholar 

  7. J.G. de Oliveira Filho, G. da Cruz Silva, A.C. de Aguiar, L. Cipriano, H.M.C. de Azeredo, S.B. Junior, M.D. Ferreira, Food Meas. (2021). https://doi.org/10.1007/s11694-020-00765-x

    Article  Google Scholar 

  8. B.A. Behbahani, F. Shahidi, F.T. Yazdi, S.A. Mortazavi, M. Mohebbi, Food Meas. 11(2), 847–863 (2018). https://doi.org/10.1007/s11694-016-9456-3

    Article  Google Scholar 

  9. M. Ramezanian, R. Azadi, M.J. Mostowfizadeh-Ghalamfarsa, M.J. Saharkhiz, Postharvest Biol. Technol. 112, 152–158 (2016). https://doi.org/10.1016/j.postharvbio.2015.10.011

    Article  CAS  Google Scholar 

  10. K. Tyagi, A. Malik, BMC Complement. Altern. Med. 10, 65 (2010). https://doi.org/10.1016/j.foodcont.2011.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. Amiri, F. Mottaghipisheh, K. Jamshidi-Kia, S. Saeidi, M. Vitalini, M. Iriti, J. Appl. Sci. 10, 8103 (2020). https://doi.org/10.3390/app10228103

    Article  CAS  Google Scholar 

  12. W.A. Elgat, A.M. Kordy, M. Böhm, R. Černý, A. Abdel-Megeed, M.Z. Salem, Processes 8(8), 1003 (2020). https://doi.org/10.3390/pr8081003

    Article  CAS  Google Scholar 

  13. F. Reyes-Jurado, A.R. Navarro-Cruz, C.E. Ochoa-Velasco, E. Palou, A. López-Malo, R. Ávila-Sosa, Crit. Rev. Food Sci. Nutr. 60, 1641–1650 (2020). https://doi.org/10.1080/10408398.2019.1586641

    Article  CAS  PubMed  Google Scholar 

  14. M. Nadjib, F.M. Amine, K. Abdelkrim, S. Fairouz, M. Maamar, J. Infect. Dis 10, 105 (2014). https://doi.org/10.3844/ajidsp.2014.105.117

    Article  CAS  Google Scholar 

  15. S. Inouye, Int. J. Aromather. 13, 95–107 (2003). https://doi.org/10.1016/S0962-4562(03)00081-X

    Article  Google Scholar 

  16. M.J. Velázquez-Nuñez, R. Avila-Sosa, E. Palou, A. López-Malo, Food Control 31, 1–4 (2013). https://doi.org/10.1016/j.foodcont.2012.09.029

    Article  CAS  Google Scholar 

  17. E. Aguilar-González, E. Palou, A. López-Malo, Innov. Food Sci. Emerg. Technol. 32, 181–185 (2015). https://doi.org/10.1016/j.ifset.2015.09.003)

    Article  Google Scholar 

  18. S. Burt, Int. J. Food Microbiol. 94, 223–253 (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.03.0

    Article  CAS  PubMed  Google Scholar 

  19. I.Y. Sengun, E. Yucel, B. Ozturk, G. Kilic, Food Meas. 15(1), 386–393 (2021). https://doi.org/10.1007/s11694-020-00639-2

    Article  Google Scholar 

  20. R. P. Adams, (Allured Publishing Corporation: Carol Stream, IL, 2007), vol. 456

  21. N.C. Mbili, U.L. Opara, C.L. Lennox, F.A. Vries, J Plant Dis Prot 124, 499–511 (2017). https://doi.org/10.1007/s41348-017-0121-9

    Article  Google Scholar 

  22. Z. Zamanian Chaleshtori, M. Bonyadian, H. Moshtaghi, A.J. Ebrahimi, Food Qual. Hazards Control. 8, 41–44 (2021)

    Google Scholar 

  23. M. Moghaddam, M. Pourbaige, H.K. Tabar, N. Farhadi, S.M.A. Hosseini, J. Essent, Oil-Bear. Plants 16, 506–512 (2013)

    Article  CAS  Google Scholar 

  24. M. Raeisi, F. Ghorbani Bidkorpeh, M. Hashemi, B. Tepe, Z. Moghaddam, M. Aman Mohammadi, S.M.A. Noori, Clin. Chem. Lab. Med. 13, 1–7 (2019). https://doi.org/10.29252/mlj.13.2.1

    Article  Google Scholar 

  25. M.J. Saharkhiz, M. Motamedi, K. Zomorodian, K. Pakshir, R. Miri, K.L. Hemyari, ISRN Pharm. 2012, 1–6 (2012). https://doi.org/10.1080/0972060X.2016.1252697

    Article  CAS  Google Scholar 

  26. J. Rohloff, J. Agric. Food Chem. 47, 3782–3786 (1999). https://doi.org/10.1021/jf981310s

    Article  CAS  PubMed  Google Scholar 

  27. J.-E. Kim, J.-E. Lee, M.-J. Huh, S.-C. Lee, S.-M. Seo, J.H. Kwon, I.-K. Park, Biomolecules 9, 561 (2019). https://doi.org/10.3390/biom9100561

    Article  CAS  PubMed Central  Google Scholar 

  28. K. Wang, S. Jiang, T. Pu, L. Fan, F. Su, M. Ye, J. Nat. Prod. Res. 33(10), 1423–1430 (2019). https://doi.org/10.1080/14620316.2017.1345332

    Article  CAS  Google Scholar 

  29. F. Khorram, A. Ramezanian, M.J. Saharkhiz, Adv. Hortic. Sci. 32, 487–494 (2018). https://doi.org/10.13128/ahs-22569

    Article  Google Scholar 

  30. H. Shirzad, A. Hassani, A. Abdollahi, Y. Ghosta, S.R. Finidokht, J. Essent. Oil-Bear. Plants 14, 175–184 (2011). https://doi.org/10.1080/0972060X.2011.10643919

    Article  CAS  Google Scholar 

  31. F. Gomes, M.I. Dias, Â. Lima, L. Barros, M.E. Rodrigues, I.C.F.R. Ferreira, M. Henriques, Antibiotics 9, 294 (2020). https://doi.org/10.3390/antibiotics9060294

    Article  CAS  PubMed Central  Google Scholar 

  32. A. Amiri, A. Ramezanian, S.M.H. Mortazavi, S.M.H. Hosseini, E. Yahia, J. Sci. Food Agric. 101(9), 3778–3786 (2021). https://doi.org/10.1002/jsfa.11010

    Article  CAS  PubMed  Google Scholar 

  33. Z.A. Moghadam, H. Hosseini, Z. Hadian, B. Asgari, L. Mirmoghtadaie, A. Mohammadi, E. Shamloo, N.H.S. Javadi, J. Pharm. Res. Int. 26(1), 1–16 (2019). https://doi.org/10.9734/jpri/2019/v26i130126

    Article  Google Scholar 

  34. J. Yu, X. Wang, F. Shao, H.W. Xu, J. Appl. Microbiol. 119, 1253–1262 (2015). https://doi.org/10.1111/jam.12939

    Article  CAS  PubMed  Google Scholar 

  35. A. Ultee, M.H.J. Bennik, R. Moezelaar, Appl. Environ. Microbiol. 68, 1561–1568 (2002). https://doi.org/10.1128/AEM.68.4.1561-1568.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. G. Ghasemi, M. Fattahi, A. Alirezalu, Y. Ghosta, Food Sci. Biotechnol. 28, 669–677 (2019). https://doi.org/10.1007/s10068-018-0506-y

    Article  CAS  PubMed  Google Scholar 

  37. H.A. Hassan, M.M. Genaidy, M.S. Kamel, S.F. Abdelwahab, J. Herb. Med. 24, 100399 (2020)

    Article  Google Scholar 

  38. D. Xu, M. Wei, S. Peng, H. Mo, L. Huang, L. Yao, L. Hu, Food Control 125, 107985 (2021)

    Article  CAS  Google Scholar 

  39. E.M. Soylu, Ş Kurt, S. Soylu, Int. J. Food Microbiol. 143, 183–189 (2010). https://doi.org/10.1016/j.ijfoodmicro.2010.08.015

    Article  CAS  PubMed  Google Scholar 

  40. A. Stavropoulou, K. Loulakakis, N. Magan, N. Tzortzakis, BioMed Res. Int. (2014). https://doi.org/10.1155/2014/562679

    Article  PubMed  PubMed Central  Google Scholar 

  41. B. Mejia-Garibay, E. Palou, A.J. Lopez-Malo, Food Prot. 78, 843–848 (2015)

    Article  CAS  Google Scholar 

  42. S. Paul, R.C. Dubey, D.K. Maheswari, S.C. Kang, Food Control 22, 725–731 (2011). https://doi.org/10.1016/j.foodcont.2010.11.003

    Article  CAS  Google Scholar 

  43. M.S. Akthar, B. Degaga, T. Azam, J. Issues ISSN. 2350, 1588 (2014)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of this work by the Shahid Chamran University of Ahvaz (Grant No. SCU.AH98.212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Azam Amiri or Mohammad Mahmoodi Sourestani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, A., Sourestani, M.M., Mortazavi, S.M.H. et al. Efficiency of chemical composition of some essential oils against Botrytis cinerea, the pathogen of post-harvest strawberry fruits. Food Measure 16, 66–75 (2022). https://doi.org/10.1007/s11694-021-01133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01133-z

Keywords

Navigation