Skip to main content
Log in

Physicochemical, microstructural, and antioxidant properties of skins from pomaces of five virginia-grown grape varieties and their response to high hydrostatic pressure processing

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Chemical compositions, physicochemical properties, microstructure, and antioxidant capacity of skins from pomaces of five Virginia-grown grape varieties and their response to high hydrostatic pressure processing (HPP) were investigated. Dietary fiber was the predominant carbohydrate, and red grape skins had higher total and insoluble dietary fibers than their white grape counterparts. The skins from variety Traminette had the highest water swelling capacity but the lowest oil retention capacity which might be associated with their large particle size. Variety Petit Verdot skins presented the highest total phenolic/anthocyanins contents along with the highest DPPH and ABTS + scavenging capacities. Although HPP treatment did not significantly (P > 0.05) alter chemical composition of the grape skins, it led to decreased particle size and morphological change from flat and compact to loose and porous appearance. These microstructural changes favored water and oil retention capacities of the HPP-treated samples. HPP treatment also enhanced the aqueous acetone extraction yield in Traminette and the total phenolic and anthoyanins contents in Petit Verdot. These results indicates the potential applicability of HPP-treated grape skins as an antioxidant dietary fiber source to augment and enhance fiber-rich functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All raw data are available for reviewers on request.

References

  1. International Organization of Vine and Wine (IOVW) (2019). http://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf. Accessed 10 April 2021

  2. J. Ferrer, G. Paez, Z. Marmol, E. Ramones, C. Chandler, M. Marın, A. Ferrer, Bioresour. Technol. 76, 39–44 (2001)

    Article  CAS  Google Scholar 

  3. L.J. Korkiel, B.J.H. Janse, M. Viljoen-Bloom, South Afr. J. Enol. Vitic. 23, 31–36 (2002)

    Google Scholar 

  4. J. Garcia-Lomillo, M. Gonzalez-SanJose, Compre. Rev. Food Sci. Food Safety 16, 1–20 (2017)

    Article  Google Scholar 

  5. A. Tseng, Y. Zhao, Y. Food Chem. 138, 356–365 (2013)

    Article  CAS  Google Scholar 

  6. V. Eskicioglu, S. Kamiloglu, D. Nilufer-Erdil, Czech J. Food Sci. 33, 487–499 (2015)

    Article  CAS  Google Scholar 

  7. H. Gul, S. Acun, H. Sen, N. Nayir, S. Turk, J. Food Agric. Environ. 11, 28–34 (2013)

    CAS  Google Scholar 

  8. S. Mironeasa, G.G. Codina, C. Mironeasa, Int. J. Food Prop. 19, 859–872 (2016)

    Article  CAS  Google Scholar 

  9. E. Kalli, I. Lappa, P. Bouchagier, P.A. Tarantilis, E. Skotti, Bioresour. Bioprocess 5, 46 (2018)

    Article  Google Scholar 

  10. S. Mildner-Szkudlarz, J. Bajerska, R. Zawirska-Wojtasiak, D. Górecka, J. Sci. Food Agric. 93, 389–395 (2013)

    Article  CAS  Google Scholar 

  11. V. Sant’Anna, F.D.P. Christiano, L.D.F. Marczak, I.C. Tessaro, R.C.S. Thys. LWT Food Sci. Technol. 58, 497–501 (2014)

  12. R. Walker, A. Tseng, G. Cavender, A. Ross, Y. Zhao. J. Food Sci. 79, S1811–1822 (2014)

  13. I.N. Smith, J. Yu, EC Nutr. 2, 291–301 (2015)

    Google Scholar 

  14. R. Marchiani, M. Bertolino, D. Ghirardello, J. Food Sci. Technol. 53, 1585–1596 (2016)

    Article  CAS  Google Scholar 

  15. C. Morris, A.L. Brody, L. Wicker, Packag. Technol. Sci. 20, 275–286 (2007)

    Article  CAS  Google Scholar 

  16. C. Jermann, T. Koutchma, E. Margas, C. Leadley, V. Ros-Polski, Innov. Food Sci. Emerg. Technol. 31, 14–27 (2015)

    Article  Google Scholar 

  17. M. Corrales, S. Toepfl, P. Butz, D. Knorr, B. Tauscher, Innov. Food Sci. Emerg. Technol. 9, 85–91 (2008)

    Article  CAS  Google Scholar 

  18. H. Zhang, Y. Ma, Czech J. Food Sci. 35, 180–187 (2017)

    Article  CAS  Google Scholar 

  19. I. Mateos-Aparicio, C. Mateos-Peinado, P. Rupérez, Innov. Food Sci. Emerg. Technol. 11, 445–450 (2010)

    Article  CAS  Google Scholar 

  20. F. Xie, M. Li, X. Lan, W. Zhang, S. Gong, J. Wu, Z. Wang, Innov. Food Sci. Emerg. Technol. 42, 157–164 (2017)

    Article  CAS  Google Scholar 

  21. Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th edn. (Association of Official Analytical Chemists, Washington DC, 2000).

  22. M. Bolen, S. Patel, T. Mui, P. Kasturi, S. Challa, Int. J. Food Sci. Technol. 53, 2415–2421 (2018)

    Article  CAS  Google Scholar 

  23. L. Yan, T. Li, C. Liu, L. Zheng, LWT - Food Sci. Technol. 107, 171–177 (2019)

    Article  CAS  Google Scholar 

  24. Y. Xu, M. Thomas, H. Bhardwaj, Int. J. Food Sci. Technol. 49, 1215–1223 (2014)

    Article  CAS  Google Scholar 

  25. K. Sheng, H. Qu, C. Liu, L. Yan, J. You, S. Shui, L. Zheng, Int. J. Food Sci. Technol. 52, 2106–2114 (2017)

    Article  CAS  Google Scholar 

  26. Y. Xu, S. Burton, C. Kim, E. Sismour, Food Sci. Nutr. 4, 125–133 (2016)

    Article  CAS  Google Scholar 

  27. M.M. Giusti, R. E. Wrolstad. In: R. E. Wrolstad (ed) Current protocols in food analytical chemistry (Wiley, NewYork, 2001). pp. F1.2.1–F1.

  28. C. Sánchez-Moreno, J.A. Larrauri, F. Saura-Calixto, J. Sci. Food Agric. 76, 270–276 (1998)

    Article  Google Scholar 

  29. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evan, Free Radic. Biol. Med. 26, 1231–1237 (1999)

    Article  CAS  Google Scholar 

  30. B. Antonic, S. Jancíková, D. Dordevic, Foods 9, 1627 (2020)

    Article  CAS  Google Scholar 

  31. S.K. Ng, T.B. Tan, P.F. Tan, G.H. Chong, C.P. Tan, Food Res. 3, 213–220 (2019)

    Article  Google Scholar 

  32. K. Tsikrika, N. O’Brien, D. Rai, Foods 8, 517 (2019)

    Article  CAS  Google Scholar 

  33. V. Tejada-Ortigoza, L.E. Garcia-Amezquita, S.O. Serna-Saldívar, O. Martín-Belloso, J. Welti-Chanes, Food Bioprocess Technol. 11, 110–121 (2018)

    Article  CAS  Google Scholar 

  34. R. Peña Armada, M.J. Villanueva‑Suarez, J. Mateos‑Aparicio. Eur. Food Res. Technol. 246, 1691–1702 (2020)

  35. G. Yu, J. Bei, J. Zhao, Q. Li, C. Cheng, Food Chem. 257, 333–340 (2018)

    Article  CAS  Google Scholar 

  36. Y.L. Huang, I.T. Hsieh, Molecules 24, 1796 (2019)

    Article  CAS  Google Scholar 

  37. F.P. Casciatori, C.L. Laurentino, A.I. Zanelato, J.C. Thoméo, Ind. Crops Prod. 64, 114–123 (2015)

    Article  CAS  Google Scholar 

  38. M.J. Otero-Pareja, L. Casas, M.T. Fernández-Ponce, C. Mantell, E.J. Martínez de la Ossa, Molecules 20, 9686–9702 (2015)

    Article  CAS  Google Scholar 

  39. Q. Jin, J. O’Hair, A.C. Stewart, S.F. O’Keefe, A.P. Neilson, Y.T. Kim, M. McGuire, A. Lee, G. Wilder, H. Huang, Foods 8, 667 (2019)

    Article  CAS  Google Scholar 

  40. X. Cao, Y. Zhang, F. Zhang, Y. Wang, J. Yi, X. Liao, J. Sci. Food Agric. 91, 877–885 (2011)

    Article  CAS  Google Scholar 

  41. M. Azeem, T.H. Mu, M. Zhang, Food Sci. Technol. Int. 26, 388–402 (2019)

    Article  Google Scholar 

  42. G. Zhao, R. Zhang, M. Zhang, Int. J. Food Sci. Technol. 52, 3–12 (2017)

    Article  CAS  Google Scholar 

  43. P. Butz, A. Fernandez Garcıa, R. Lindauer, S. Dieterich, A. Bognar, B. Tauscher. J. Food Eng. 56, 233–236 (2003).

  44. R. Doblado, J. Juana Frıas, C. Vidal-Valverde. Food Chem. 101, 918–923 (2007).

Download references

Acknowledgements

We thank Mr. Brian Jones at Sabra Dipping Company for assisting analyzing particle size distribution. The research was conducted at Virginia State University Agricultural Research Station (Journal Series number 377).

Funding

The project is supported by the USDA capacity building Grant (Award number: 2017-38821-26433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Sismour, E., Abraha-Eyob, Z. et al. Physicochemical, microstructural, and antioxidant properties of skins from pomaces of five virginia-grown grape varieties and their response to high hydrostatic pressure processing. Food Measure 15, 5547–5555 (2021). https://doi.org/10.1007/s11694-021-01126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01126-y

Keywords

Navigation