Skip to main content
Log in

Development and validation of a method for quantification of residual florfenicol in various tissues of broiler chicken by UPLC-MS/MS

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Florfenicol is a chloramphenicol antibiotic that plays an essential role on bacteriostasis. Long-term use of florfenicol in livestock and poultry can cause immunetoxicity and reproductive toxicity and the consumption of animal-derived products with excessive residues of florfenicol will pose a certain threat to human health. To study residue depletion of oral florfenicol in chickens, 48 healthy 30 -day -old AA broilers received continuous administration of 150 mg/kg/d florfenicol for five days. Muscle, liver, kidney and sebum were collected at 0.16, 1, 3, 5, 7 and 9 days after discontinuation of the drug and detected by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Most previous studies have shown that acid hydrolysis is necessary for tissue sample extraction. However, the steps of acid hydrolysis are tedious and time-consuming. In this experiment, we tried to improve the solvent extraction method to simplify the pretreatment process and the effect of acid hydrolysis was further analyzed and compared. Using the WT1.4 software the withdrawal time in muscle, liver, kidney and sebum obtained by F-QuEChERS-AOAC 3202 method was 7.82, 0.06, 4.38, 13.71 days respectively while acid hydrolysis method were 8.89, 5.84, 5.39 and 9.65 days, respectively. To reduce the residues of florfenicol and ensure the safety of chicken products, it is recommended that chickens taking oral florfenicol should be subjected to a 14 -days withdrawal time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 1
Fig. 3

Similar content being viewed by others

References

  1. Myung-Jin Choia, Eun-Mi Leea, Seung-Jin Lee, Md. Ahsanur Reza, Man-Hee Rhee and Seung-Chun Park (2011). Pak Vet J. doi: https://doi.org/10.1080/00480169.2011.610285

  2. Yu. Ying Wang, Z.L. An, Yu. Zhou, D. Zhang, Food Addit Contama (2020). https://doi.org/10.1080/19440049.2019.1591641

    Article  Google Scholar 

  3. K.N. Bretzlaff, C.A. Neff-Davis, R.S. Ott, G.D. Koritz, L.E. Davis, J Vet Pharmacol Ther (2010). https://doi.org/10.1111/j.1365-2885.1987.tb00534.x

    Article  Google Scholar 

  4. A. Sieroslawska, M. Studnicka, A. Bownik, A. Rymuszka, J. Slonka, A.K. Siwicki, Acta Vet Brno (1998). https://doi.org/10.2754/avb199867040329

    Article  Google Scholar 

  5. G.X. Yang, G.D. Deng, M. Zou, Z.L. Zeng, Z.L. Chen, Acute and Subchronic Toxicity of Florfenicol on Rats. Chinese Journal of Veterinayr Science 03, 275–278 (2000)

    Google Scholar 

  6. R.H. Abubakar, E. Madoroba, O. Adenubi, D. Morar-Leather, F.O. Fasina, J Vet Med Anim Health (2017). https://doi.org/10.5897/JVMAH2017.0594

    Article  Google Scholar 

  7. L. Sun, L. Zhang, Q. Xu, X. Wang, S. Wang, Research development of toxicity and residue detection methods of florfenicol. Chin J Vet Drug 43(6), 49–52 (2009)

    Google Scholar 

  8. H.M. Jang, Y.B. Kim, S. Choi, Y. Lee, S.G. Shin, T. Unno et al., Environ Pollut (2016). https://doi.org/10.1016/j.envpol.2017.10.006

    Article  PubMed  Google Scholar 

  9. Z. Ping, P. Linyao, X.U. Changwen, L.I. Yunxia, Z. Anyun, Study on Florfenicol Resistance and fexA Genetic Environment in Enterococcus from Swine. China Animal Husbandry 45(6), 1700–1707 (2018)

    Google Scholar 

  10. F.D. Wu, Florfenicol Resistance and Sequence Analysis of floR Gene in Different Bacteria. Chin. Agric. Sci. Bull. 35(2), 122–126 (2018)

    Google Scholar 

  11. S. Schwarz, C. Werckenthin, C. Kehrenberg, Antimicrob Agents Ch (2000). https://doi.org/10.1128/AAC.44.9.2530-2533.2000

    Article  Google Scholar 

  12. W. Tao, M.H. Lee, J. Wu, N.H. Kim, J.C. Kim, E. Chung et al., Appl Environ Microbiol (2012). https://doi.org/10.1128/AEM.01154-12

    Article  PubMed  PubMed Central  Google Scholar 

  13. C. Kehrenberg, S. Schwarz, Antimicrob Agents Ch (2004). https://doi.org/10.1128/AAC.48.2.615-618.2004

    Article  Google Scholar 

  14. L. Hebing, W. Yang, W. Congming, S. Stefan, S. Zhangqi, J. Byeonghwa, J Antimicrob Chemoth (2012). https://doi.org/10.1093/jac/dkr481

    Article  Google Scholar 

  15. E.H. Kim, T. Aoki, Microbiol Immunol (1996). https://doi.org/10.1111/j.1348-0421.1996.tb01125.x

    Article  PubMed  Google Scholar 

  16. Y.H. Wang, G.Q. Wang, Microb Pathogesis (2018). https://doi.org/10.1016/j.micpath.2018.02.042

    Article  Google Scholar 

  17. K.S. Lang, J.M. Anderson, S. Schwarz, L. Williamson, J. Handelsman, R.S. Singer, Appl Environ Microb (2010). https://doi.org/10.1128/AEM.00323-10

    Article  Google Scholar 

  18. H. Tao, S. Jianzhong, S. Stefan, W. Congming, W. Yang, J Antimicrob Chemoth (2015). https://doi.org/10.1093/jac/dku491

    Article  Google Scholar 

  19. Da Costa, P. , Loureiro, Luís, & Matos, A. . (2013). Int. J. Environ. Res. Public Health. Doi: https://doi.org/10.3390/ijerph10010278

  20. M.G. Brenner, K. Kristina, M.T. Sweeney, B. Elzbieta, L. Heiko, D. Rolf, J Antimicrob Chemoth (2012). https://doi.org/10.1093/jac/dkr406

    Article  Google Scholar 

  21. S. Jianzhong, W. Yang, S. Stefan, J Antimicrob Chemoth (2013). https://doi.org/10.1093/jac/dkt092

    Article  Google Scholar 

  22. A. Nasim, B. Aslam, I. Javed, A. Ali, F. Muhammad, A. Raza, J Sci Food Agr. (2015). https://doi.org/10.1002/jsfa.7220

    Article  Google Scholar 

  23. State Administration for Market Regulation. Notification of 24 batches of disqualified food [EB/OL]. [2018–10–23]. http://samr.saic.gov.cn/tg/201810/t20181023_276376.html.

  24. Shanoy, C., Anderson, Seenivasan, Subbiah, & Angella, et al. (2016). J Chromatogr B. doi: https://doi.org/10.1016/j.jchromb.2016.08.014

  25. L.J.M. Jansen, R.J. Berentsen, M. Arends, B.J.A. Berendsen, Food Addit Contama A. (2020). https://doi.org/10.1080/19440049.2020.1725147

    Article  Google Scholar 

  26. P.P.J. Mulder, S.L.D. Witte, G.M. Stoopen, J.V.D. Meulen, P.G.V. Wikselaar, E. Gruys, Food Addit Contama A (2016). https://doi.org/10.1080/19440049.2016.1241430

    Article  Google Scholar 

  27. Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin, Off. J. of Eur. Union. L 15 (2010) 1-72.

  28. S. Al-Shahrani, V. Naidoo, BMC Vet Res. (2015). https://doi.org/10.1186/s12917-015-0536-0

    Article  PubMed  PubMed Central  Google Scholar 

  29. Afifi, N. A. , & El‐Sooud, K. Abo. (1997). Br Poult. Doi: https://doi.org/10.1080/00071669708418013

  30. Committee for Veterinary Medicinal Products: Florfenicol, Summary Report(1). http://www.eudra. Org/ emea. Html. 2002, (1)

  31. Notice No. 235 of the Ministry of Agriculture of the people's Republic of China《National food safety standard-Maximum residue limits for veterinary drugs in foods》.2019.

  32. D. Faulkner, M. Cantley, M. Walker, S. Crooks, D. Kennedy, C. Elliott, Food Addit Contam A. (2016). https://doi.org/10.1080/19440049.2016.1175187

    Article  Google Scholar 

  33. Muhammad Imran, Fazal-e-Habib, Abdul Tawab, Waqar Rauf, Moazur Rahman. (2017). J Chromatogra B. doi: https://doi.org/10.1016/j.jchromb.2017.08.029.

  34. A. Kong, A. Deng, X. Wu, J. Qiao, J Liq Chromatogr R T. (2014). https://doi.org/10.1080/10826076.2013.864976

    Article  Google Scholar 

  35. Animal management regulations (2016). Electronic Journal of Practical Organ Transplantation.; 4(2),66–67.

  36. M.P.G. Nahler, Committee for Veterinary Medicinal Products (CVMP) (2009). https://doi.org/10.1007/978-3-211-89836-9_245

    Article  Google Scholar 

  37. Commission E (2002) Commission Decision (EC) no 675/2002 of 12th August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Union. L221/8–36.

  38. F.S. Aliabadi, P. Lees, Int J Antimicrob Ag (2000). https://doi.org/10.1016/S0924-8579(00)00142-4

    Article  Google Scholar 

  39. Zhang Xu (2005). “Studies on the Post-antibiotic Effects and Pharmacokinrtics of Florfenicol in Chicken.” Huazhong Agricultural University.

  40. M. Ismail, Y.A. El-Kattan, Brit Poultry Sci. (2009). https://doi.org/10.1080/00071660802613286

    Article  Google Scholar 

  41. J. Cornejo, E. Pokrant, R. Riquelme, C. Briceno, A. Maddaleno, C. Araya-Jordan, Food Addit Contam. (2017). https://doi.org/10.1080/19440049.2016.1267876

    Article  Google Scholar 

  42. N.B. Po, O.P. Paw, A.U. Pas, T. Grabowski, A. Suszko, M. Lis, Brit Poultry Sci. (2017). https://doi.org/10.1080/00071668.2016.1261994

    Article  Google Scholar 

  43. F.A. Mohammed, Comparison of three nonlinear functions for describing chicken growth curves. Scientia Agriculturae 9(3), 120–123 (2015)

    CAS  Google Scholar 

  44. J.B. Feng, D.R. Huang, M. Zhong, P. Liu, J.D. Dong, J Fish Dis. (2016). https://doi.org/10.1111/jfd.12416

    Article  PubMed  Google Scholar 

  45. H. Ekici, E. Yarsan, J Anim Vet Adv. (2014). https://doi.org/10.5455/javar.2014.a28

    Article  Google Scholar 

  46. H.A. El-Banna, Brit Poultry Sci. (1998). https://doi.org/10.1080/00071669888656

    Article  Google Scholar 

  47. Lu Y. Z. (2007) “The Determination Method of ThiamPhenicol and F1orfenieol Residues and their Elimination in Chicken Tissues.” Anhui Agricultural University.

  48. B.J.A. Berendsen, G. Bor, H.W. Gerritsen, L.J.M. Jansen, T. Zuidema, Food Addit Contam A. (2013). https://doi.org/10.1080/19440049.2013.843026

    Article  Google Scholar 

  49. B. San Martín, J. Cornejo, D. Iraguen, H. Hidalgo, A. Anadón, J Food Protect. (2007). https://doi.org/10.1111/j.1745-4549.2007.00132.x

    Article  Google Scholar 

  50. L.J.M. Jansen, Y.J.C. Bolck, J. Rademaker, T. Zuidema, B.J.A. Berendsen, Anal Bioanal Chem. (2017). https://doi.org/10.1007/s00216-017-0445-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the Shandong Key R & D Plan (Major Scientific and Technological Innovation Project)-(2019JZZY020903) and Shandong Academy of agricultural sciences agricultural science and technology innovation engineering industry-major technological innovation (CXGC2016B17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shancang Zhao.

Ethics declarations

Conflict of interest

The authors declare to have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Fan, L., zhao, L. et al. Development and validation of a method for quantification of residual florfenicol in various tissues of broiler chicken by UPLC-MS/MS. Food Measure 15, 3143–3152 (2021). https://doi.org/10.1007/s11694-021-00874-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00874-1

Keyword

Navigation