Skip to main content

Advertisement

Log in

Variability in resistant starch, vitamins, carotenoids, phytochemicals and in-vitro antioxidant properties among diverse pigmented grains

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Maize, sorghum, quinoa and rice are important grains which serve as the major source of carbohydrates and micronutrients in the diet. Apart from their normal color, these crops are also cultivated in different colors among diverse regions of the world. In the present study, various pigmented grains including maize, sorghum, rice and quinoa of different color were evaluated for their nutrients, anti-nutrients, phytochemicals and antioxidant activity. Resistant starch, amylose, total starch, and damaged starch contents varied significantly (p < 0.05) among the evaluated samples. Water soluble vitamins, tocols and carotenoids showed wide variability among the grains. The findings showed riboflavin, niacin, pantothenic acid and total folic acid content were found significantly (p < 0.05) higher in red sorghum (177.01 μg/100 g), orange maize (2233.98 μg/100 g), red quinoa (1361.16 μg/100 g) and black quinoa (147.33 μg/100 g), respectively. Total tocopherols and tocotrienols ranged from 35.33 to 192.72 and 17.03 to 231.39 μg/100 g, respectively. Total phenolic, flavonoid and anthocyanin content varied significantly (p < 0.05) and were recorded between 282.12 to 900.54 mg gallic acid equivalents (GAE)/100 g, 120.29 to 174.11 mg catechin equivalents (CE)/100 g and 13.44 to 197.04 mg cyanidin-3-glucoside equivalents (CGE)/100 g, respectively. The total proanthocyanidin content varied significantly among pigmented grains and ranged from 2.11 to 32.18 mg catechin equivalent (CE)/100 g. The free radical scavenging activity evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) varied significantly among samples and was observed between 13.52 to 56.89% and 32.01 to 65.10%, respectively. Reducing power and metal chelating activity varied significantly among pigmented grains and were observed between 3.04 to 5.98 mol ascorbic acids equivalents (Mol AAE)/100 g and 56 to 67.1%, respectively. Maroon maize had the highest phytic acid content of 609.21 mg/100 g. The bioaccessibility of iron (Fe) and zinc (Zn) was found to be higher for both black and red quinoa. Overall, red and black quinoa had low content of phytic acid and high content of nutrient than other pigmented grains evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C.K. Reddy, L. Kimi, S. Haripriya, J. Food Meas. Charact. 10, 605–613 (2016)

    Article  Google Scholar 

  2. J. Kumari, A. Kumar, T.P. Singh, K.C. Bhatt, A.K. Mishra, D.P. Semwal, R.K. Sharma, J.C. Rana, Indian J. Agricul. Sci. 87(6), 727–733 (2017)

    Google Scholar 

  3. A. Navarro, A. Torres, F. Fernández-Aulis, C. Peña, ed. By Amanullah (InTech, London, UK, 2018), p. 69-91

  4. E.S.M. Abdel-Aal, J.C. Young, I. Rabalski, J. Agric. Food Chem. 54(13), 4696–4704 (2006)

    Article  CAS  Google Scholar 

  5. F. Finocchiaro, B. Ferrari, A. Gianinetti, C. Dall Asta, G. Galaverna, F. Scazzina, N. Pellegrini, Mol. Nutr. Food Res. 51, 1006–1019 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. S. Sharma, P. Khare, A. Kumar, V. Chunduri, A. Kumar, P. Kapoor, P. Mangal, K.K. Kondepudi, M. Bishnoi, M. Garg, Mol. Nutr. Food Res. 64(13), 1900999 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  7. Q. Zhang, E.G. de Mejia, D. Luna-Vital, T. Tao, S. Chandrasekaran, L. Chatham, J. Juvik, V. Singh, D. Kumar, Food Chem. 289, 739–750 (2019)

    Article  CAS  PubMed  Google Scholar 

  8. S. Chutipaijit, T. Sutjaritvorakul, J. Food Meas. Charact. 12(2), 781–788 (2018)

    Article  Google Scholar 

  9. Y. Su, C. Qin, Z. Li, Y. Cheng, N. Ahmed, C. Zhang, L. Zhang, Pak. J. Bot. 51(6), 2073–2079 (2019)

    Article  CAS  Google Scholar 

  10. S.H. Nam, S.P. Choi, M.Y. Kang, H.J. Koh, N. Kozukue, M. Friedman, Food Chem. 94, 613–620 (2006)

    Article  CAS  Google Scholar 

  11. E.T. Callcott, C.L. Blanchard, P. Snell, A.B. Santhakumar, Food Funct. 10(12), 8230–8239 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. C. Chen, P. Somavat, V. Singh, E.G. de Mejia, Ind. Crops Prod. 109, 464–475 (2017)

    Article  CAS  Google Scholar 

  13. Y. Tang, X. Li, P.X. Chen, B. Zhang, M. Hernandez, H. Zhang, M.F. Marcone, R. Liu, R. Tsao, Food Chem. 174, 502–508 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. V. Hernández-Martínez, Y. Salinas-Moreno, J.L. Ramírez-Díaz, G. Vázquez-Carrillo, A. Domínguez-López, A.G. Ramírez-Romero, Cyta-J. Food 14, 473–481 (2016)

    Google Scholar 

  15. G.A. Camelo-Méndez, E. Agama-Acevedo, M.M. Sanchez-Rivera, L.A. Bello-Pérez, Food Chem. 211, 281–284 (2016)

    Article  PubMed  CAS  Google Scholar 

  16. E. Lo Piparo, H. Scheib, N. Frei, G. Williamson, M. Grigorov, C.J. Chou, J. Med. Chem. 51, 3555–3561 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. L. Miao, Y. Zhang, X. Yang, J. Xiao, H. Zhang, Z. Zhang, Y. Wang, G. Jiang, Food Chem. 207, 93–100 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. T. Tsuda, F. Horio, K. Uchida, H. Aoki, T. Osawa, J. Nutr. 133, 2125–2130 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. N.L. Mkandawire, R.C. Kaufman, S.R. Bean, C.L. Weller, D.S. Jackson, D.J. Rose, J. Agric. Food Chem. 61, 4448–4454 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. F. Barros, J.M. Awika, L.W. Rooney, J. Agric. Food Chem. 60, 11609–11617 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Pang, S. Ahmed, Y. Xu, T. Beta, Z. Zhu, Y. Shao, J. Bao, Food Chem. 240, 212–221 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Shao, F. Xu, X. Sun, J. Bao, T. Beta, J. Cereal Sci. 59, 211–218 (2014)

    Article  CAS  Google Scholar 

  23. Y. Shao, Z. Hu, Y. Yu, R. Mou, Z. Zhu, T. Beta, Food Chem. 239, 733–741 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. A.C. Pedro, D. Granato, N.D. Rosso, Food Chem. 191, 12–20 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. S. Žilić, A. Serpen, G. Akıllıoğlu, V. Gökmen, J. Vančetović, J. Agric. Food Chem. 60(5), 1224–1231 (2012)

    Article  PubMed  CAS  Google Scholar 

  26. S. Kuhnen, P.M. Menel Lemos, L.H. Campestrini, J.B. Ogliari, P.F. Dias, M. Maraschin, J. Sci. Food Agric. 91(9), 1548–1553 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. B. Harakotr, B. Suriharn, R. Tangwongchai, M.P. Scott, K. Lertrat, Food Chem. 164, 510–517 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. L.X. Lopez-Martinez, R.M. Oliart-Ros, G. Valerio-Alfaro, C.H. Lee, K.L. Parkin, H.S. Garcia, LWT 42(6), 1187–1192 (2009)

    Article  CAS  Google Scholar 

  29. V.M. Rodríguez, P. Soengas, A. Landa, A. Ordás, P. Revilla, Euphytica 193(3), 339–345 (2013)

    Article  CAS  Google Scholar 

  30. S.H. Ryu, L. Werth, S. Nelson, J.C. Scheerens, R.C. Pratt, Econ. Bot. 67(2), 98–109 (2013)

    Article  CAS  Google Scholar 

  31. D.A. Urias-Lugo, J.B. Heredia, S.O. Serna-Saldivar, M.D. Muy-Rangel, J.B. Valdez-Torres, Cyta-J. Food 13(3), 336–339 (2015)

    Article  CAS  Google Scholar 

  32. E. Cuevas Montilla, S. Hillebrand, A. Antezana, P. Winterhalter, J. Agric. Food Chem. 59(13), 7068–7074 (2011)

    Article  PubMed  CAS  Google Scholar 

  33. A.N. Nankar, B. Dungan, N. Paz, N. Sudasinghe, T. Schaub, F.O. Holguin, R.C. Pratt, J. Sci. Food Agric. 96(13), 4542–4552 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. J. Escribano, J. Cabanes, M. Jiménez-Atiénzar, M. Ibañez-Tremolada, L.R. Gómez-Pando, F. García-Carmona, F. Gandía-Herrero, Food Chem. 234, 285–294 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. Y. Tang, X. Li, P.X. Chen, B. Zhang, R. Liu, M. Hernandez, J. Draves, M.F. Marcone, R. Tsao, J. Agric. Food Chem. 64, 1103–1110 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. Y.K. Diaz-Valencia, J.J. Alca, M.A. Calori-Domingues, S.J. Zanabria-Galvez, S.H. Da Cruz, Nova Biotechnol. et Chim. 17, 74–85 (2018)

    Article  CAS  Google Scholar 

  37. E. Pereira, C. Encina-Zelada, L. Barros, U. Gonzales-Barron, V. Cadavez, I.C. Ferreira, Food Chem. 280, 110–114 (2019)

    Article  CAS  PubMed  Google Scholar 

  38. S. Arumugasamy, N. Jayashankar, K. Subramanian, S. Sridhar, K. Vijayalakshmi, Centre for Indian Knowledge Systems (CIKS), Chennai, Tamil Nadu, India, 74 (2001)

  39. AOAC (Association of Official Analytical Chemists), Official methods of analysis of the association of official analytical chemists international. (AOAC International, Gaithersburg, Maryland, USA, 2005)

  40. M. Shafi, W.N. Baba, F.A. Masoodi, J. Food Meas. Charact. 11, 1094–1105 (2017)

    Article  Google Scholar 

  41. M. Piecyk, E. Worobiej, R. Wołosiak, B. Drużyńska, E. Ostrowska-Ligęza, J. Food Meas. Charact. 13, 848–856 (2019)

    Article  Google Scholar 

  42. E. Agama-Acevedo, A.P.B. De La Rosa, G. Méndez-Montealvo, L.A. Bello-Pérez, Starch-Stärke 60(8), 433–441 (2008)

    Article  CAS  Google Scholar 

  43. J.L. Casterline Jr., C.J. Oles, Y. Ku, J. AOAC Int. 82(3), 759–765 (1999)

    Article  CAS  PubMed  Google Scholar 

  44. T. Longvah, V.S.S. Prasad, Food Chem. 318, 126385 (2020)

    Article  CAS  PubMed  Google Scholar 

  45. D.B. Rodriguez-Amaya, M. Kimura, HarvestPlus Handbook for Carotenoid Analysis (Harvest Plus, Washington, DC, 2004), pp. 1–51

    Google Scholar 

  46. WHO/FAO, Report of a joint FAO/WHO expert consultation, Bangkok, Thailand (Food and Nutrition Division, FAO, Rome, 2001), pp. 235–247

  47. V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16, 144–158 (1965)

    CAS  Google Scholar 

  48. P. Sharma, H.S. Gujral, B. Singh, Food Chem. 131, 1406–1413 (2012)

    Article  CAS  Google Scholar 

  49. L.G. Butler, M.L. Price, J.E. Brotherton, J. Agric. Food Chem. 30, 1087–1089 (1982)

    Article  CAS  Google Scholar 

  50. I.F.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70–76 (1996)

    Article  CAS  PubMed  Google Scholar 

  51. M. Ferri, A. Gianotti, A. Tassoni, J. Food Compos. Anal. 30, 94–101 (2013)

    Article  CAS  Google Scholar 

  52. A. Nankar, F.O. Holguin, M.P. Scott, R.C. Pratt, Cereal Chem. 94, 950–955 (2017)

    CAS  Google Scholar 

  53. P.A. Rodríguez-Salinas, F. Zavala-García, V. Urías-Orona, D. Muy-Rangel, J.B. Heredia, G. Niño-Medina, Arab. J. Sci. Eng. 45(1), 95–112 (2020)

    Article  CAS  Google Scholar 

  54. A. Bhargava, S. Shukla, D. Ohri, Field Crops Res. 101(1), 104–116 (2007)

    Article  Google Scholar 

  55. K. Petroni, M. Landoni, F. Tomay, V. Calvenzani, C. Simonelli, M. Cormegna, Univers J. Agric. Res. 5(5), 312–321 (2017)

    Article  Google Scholar 

  56. D. Ape, N.A. Nwongu, E.I. Uwakwe, C.S. Ikedinobi, Greener J. Agric. Sci. 6(9), 272–375 (2016)

    Article  Google Scholar 

  57. M. Pellegrini, R. Lucas-Gonzales, A. Ricci, J. Fontecha, J. Fernández-López, J.A. Pérez-Álvarez, M. Viuda-Martos, Ind. Crops Prod. 111, 38–46 (2018)

    Article  CAS  Google Scholar 

  58. V.A.V. Queiroz, C.S. da Silva, C.B. de Menezes, R.E. Schaffert, F.F.M. Guimarães, L.J.M. Guimarães, P.E. de Oliveira Guimarães, F.D. Tardin, J. Cereal Sci. 65, 103–111 (2015)

    Article  CAS  Google Scholar 

  59. T. Longvah, R. Ananthan, K. Bhaskarachary, K. Venkaiah, Indian Food Composition Tables (ICMR-National Institute of Nutrition, Hyderabad, Telangana, India, 2017).

    Google Scholar 

  60. V. Taleon, L. Dykes, W.L. Rooney, L.W. Rooney, J. Cereal Sci. 56(2), 470–475 (2012)

    Article  CAS  Google Scholar 

  61. B.V. McCleary, C. McLoughlin, L.M. Charmier, P. McGeough, Cereal Chem. 97(1), 114–137 (2020)

    Article  CAS  Google Scholar 

  62. P.S. Mansilla, M.C. Nazar, G.T. Pérez, Int. J. Biol. Macromol. 146, 311–319 (2020)

    Article  CAS  PubMed  Google Scholar 

  63. M. Wronkowska, M. Soral-Śmietana, E. Biedrzycka, Int. J. Food Sci. Nutr. 59, 80–87 (2008)

    Article  CAS  PubMed  Google Scholar 

  64. J.H. Dupuis, Q. Liu, R.Y. Yada, Compr. Rev. Food Sci. Food 13, 1219–1234 (2014)

    Article  CAS  Google Scholar 

  65. A. Moongngarm, Am. J. Agric. Biol. Sci. 8, 107 (2013)

    Article  CAS  Google Scholar 

  66. C.F. Jenner, T.D. Ugalde, D. Aspinall, D. Funct, Plant Biol. 18(3), 211–226 (1991)

    CAS  Google Scholar 

  67. M.E. Hefni, A. Thomsson, C.M. Witthöft, Int. J. Food Sci. Nutr. 1, 1–9 (2020)

    Google Scholar 

  68. R.G. Utrilla-Coello, E. Agama-Acevedo, A.P. Barba de la Rosa, S.L. Rodríguez-Ambriz, L.A. Bello-Pérez, Cereal Chem. 87, 50–56 (2010)

    Article  CAS  Google Scholar 

  69. F. Zhu, H. Li, LWT 114, 108367 (2019)

    Article  CAS  Google Scholar 

  70. S.S. Arya, P.D. Sadawarte, A.G. Waghmare (2015) Available online https://www.researchgate.net/publication/277634923.

  71. S. Srichuwong, D. Curti, S. Austin, R. King, L. Lamothe, H. Gloria-Hernandez, Food Chem. 233, 1–10 (2017)

    Article  CAS  PubMed  Google Scholar 

  72. L. Granda, A. Rosero, K. Benešová, H. Pluháčková, J. Neuwirthová, R. Cerkal, J. Food Sci. 83(10), 2439–2447 (2018)

    Article  CAS  PubMed  Google Scholar 

  73. V. Rocha-Villarreal, J.F. Hoffmann, N.L. Vanier, S.O. Serna-Saldivar, S. García-Lara, Food Chem. 263, 225–231 (2018)

    Article  CAS  PubMed  Google Scholar 

  74. M. Asiedu, E. Lied, R. Nilsen, K. Sandnes, Food Chem. 48(2), 201–204 (1993)

    Article  CAS  Google Scholar 

  75. D.B. Haytowitz, L. Lemar, P. Pehrsson, J. Exler, K. Patterson, R. Thomas, M.S. Nickle, J.R. Williams, B.A. Showell, M. Khan, M. Duvall, USDA National Nutrient Database for Standard Reference, Release 24 (US Department of Agriculture, Washington, DC, USA, 2011).

    Google Scholar 

  76. K. Hälvin, I. Nisamedtinov, T. Paalme, Anal. Bioanal. Chem. 406(28), 7355–7366 (2014)

    Article  PubMed  CAS  Google Scholar 

  77. J. Ruales, B.M. Nair, Food Chem. 48(2), 131–136 (1993)

    Article  CAS  Google Scholar 

  78. Q.P. Hu, J.G. Xu, J. Agric. Food Chem. 59(5), 2026–2033 (2011)

    Article  CAS  PubMed  Google Scholar 

  79. V. Castro-Alba, C.E. Lazarte, D. Perez-Rea, N.G. Carlsson, A. Almgren, B. Bergenståhl, Y. Granfeldt, J. Sci. Food Agric. 99(11), 5239–5248 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. J. Lehrfeld, E.R. Morris, J. Agric. Food Chem. 40(11), 2208–2210 (1992)

    Article  CAS  Google Scholar 

  81. A.C. Nascimento, C. Mota, I. Coelho, S. Gueifão, M. Santos, A.S. Matos, A. Gimenez, M. Lobo, N. Samman, I. Castanheira, Food Chem. 148, 420–426 (2014)

    Article  CAS  PubMed  Google Scholar 

  82. V.A.V. Queiroz, P.E.D.O. Guimarães, L.R. Queiroz, E.D.O. Guedes, V.D.B. Vasconcelos, L.J. Guimarães, P.E.D.A. Ribeiro, R.E. Schaffert, Food Sci. Technol. 31, 577–583 (2011)

    Article  Google Scholar 

  83. G. Ma, Y. Jin, J. Piao, F. Kok, B. Guusje, E. Jacobsen, J. Agric. Food Chem. 53(26), 10285–10290 (2005)

    Article  CAS  PubMed  Google Scholar 

  84. R. Repo-Carrasco-Valencia, J.K. Hellström, J.M. Pihlava, P.H. Mattila, Food Chem. 120(1), 128–133 (2010)

    Article  CAS  Google Scholar 

  85. F.M. Bhat, C.S. Riar, J. Food Meas. Charact. 12(1), 56–67 (2018)

    Article  Google Scholar 

  86. S. Butsat, S. Siriamornpun, Food Sci. Technol. Int. 16(4), 329–336 (2010)

    Article  CAS  PubMed  Google Scholar 

  87. M. Miranda, A. Vega-Gálvez, J. López, G. Parada, M. Sanders, M. Aranda, E. Uribe, K. Di Scala, Ind. Crops Prod. 32(3), 258–263 (2010)

    Article  CAS  Google Scholar 

  88. F. Finocchiaro, B. Ferrari, A. Gianinetti, J. Cereal Sci. 51(1), 28–34 (2010)

    Article  CAS  Google Scholar 

  89. L. de Morais Cardoso, S.S. Pinheiro, C.W.P. de Carvalho, V.A.V. Queiroz, C.B. de Menezes, A.V.B. Moreira, F.A.R. de Barros, J.M. Awika, H.S.D. Martino, H.M. Pinheiro-Sant Ana, J. Cereal Sci. 65, 220–226 (2015)

    Article  CAS  Google Scholar 

  90. G. Rocchetti, G. Chiodelli, G. Giuberti, F. Masoero, M. Trevisan, L. Lucini, Food Chem. 228, 367–373 (2017)

    Article  CAS  PubMed  Google Scholar 

  91. V. Melini, R. Acquistucci, J. Food Meas. Charact. 11(4), 2151–2159 (2017)

    Article  Google Scholar 

  92. V. Rajendran, H.P. Sivakumar, I. Marichamy, S. Sundararajan, S. Ramalingam, J. Food Meas. Charact. 12(4), 2598–2606 (2018)

    Article  Google Scholar 

  93. G. Oboh, A.O. Ademiluyi, A.A. Akindahunsi, Int. J. Food Sci. Tech. 45(6), 1236–1242 (2010)

    Article  CAS  Google Scholar 

  94. T. Laokuldilok, C.F. Shoemaker, S. Jongkaewwattana, V. Tulyathan, J. Agric. Food Chem. 59(1), 193–199 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to Dr. Manoj Kumar (Assistant Professor, English), Amity School of Language, Amity University Rajasthan, Jaipur, India and Dr. Theara, Senior Researcher, English and Foreign Language University, Hyderabad, India, for spending time to improve the English of the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paras Sharma.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmi, S., Goudar, G., Singh, M. et al. Variability in resistant starch, vitamins, carotenoids, phytochemicals and in-vitro antioxidant properties among diverse pigmented grains. Food Measure 15, 2774–2789 (2021). https://doi.org/10.1007/s11694-021-00864-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00864-3

Keywords

Navigation