Skip to main content
Log in

Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. At present, no definite ALS biomarkers are available. In this study, exosomes from the plasma of patients with ALS and healthy controls were extracted, and differentially expressed exosomal proteins were compared. Among them, the expression of exosomal coronin-1a (CORO1A) was 5.3-fold higher than that in the controls. CORO1A increased with disease progression at a certain proportion in the plasma of patients with ALS and in the spinal cord of ALS mice. CORO1A was also overexpressed in NSC-34 motor neuron-like cells, and apoptosis, oxidative stress, and autophagic protein expression were evaluated. CORO1A overexpression resulted in increased apoptosis and oxidative stress, overactivated autophagy, and hindered the formation of autolysosomes. Moreover, CORO1A activated Ca2+-dependent phosphatase calcineurin, thereby blocking the fusion of autophagosomes and lysosomes. The inhibition of calcineurin activation by cyclosporin A reversed the damaged autolysosomes. In conclusion, the role of CORO1A in ALS pathogenesis was discovered, potentially affecting the disease onset and progression by blocking autophagic flux. Therefore, CORO1A might be a potential biomarker and therapeutic target for ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH. Amyotrophic lateral sclerosis. Lancet 2017; 390(10107): 2084–2098

    Article  PubMed  Google Scholar 

  2. Fang T, Al Khleifat A, Meurgey JH, Jones A, Leigh PN, Bensimon G, Al-Chalabi A. Stage at which riluzole treatment prolongs survival in patients with amyotrophic lateral sclerosis: a retrospective analysis of data from a dose-ranging study. Lancet Neurol 2018; 17(5): 416–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jaiswal MK. Riluzole and edaravone: a tale of two amyotrophic lateral sclerosis drugs. Med Res Rev 2019; 39(2): 733–748

    Article  PubMed  Google Scholar 

  4. Zhang J, Liu Y, Liu X, Li S, Cheng C, Chen S, Le W. Dynamic changes of CX3CL1/CX3CR1 axis during microglial activation and motor neuron loss in the spinal cord of ALS mouse model. Transl Neurodegener 2018; 7(1): 35

    Article  PubMed  PubMed Central  Google Scholar 

  5. Oskarsson B, Gendron TF, Staff NP. Amyotrophic lateral sclerosis: an update for 2018. Mayo Clin Proc 2018; 93(11): 1617–1628

    Article  PubMed  Google Scholar 

  6. Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA ALS genetics, mechanisms, and therapeutics: where are we now?. Front Neurosci 2019; 13: 1310

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 2011; 7(11): 639–649

    Article  CAS  PubMed  Google Scholar 

  8. Liu X, Gao Y, Lin X, Li L, Han X, Liu J. The coronin family and human disease. Curr Protein Pept Sci 2016; 17(6): 603–611

    Article  CAS  PubMed  Google Scholar 

  9. Ferrari G, Langen H, Naito M, Pieters J. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 1999; 97(4): 435–447

    Article  CAS  PubMed  Google Scholar 

  10. Ford ML. Coronin-1, king of alloimmunity. Immunity 2019; 50(1): 3–5

    Article  CAS  PubMed  Google Scholar 

  11. Li L, Zhang X, Le W. Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy 2008; 4(3): 290–293

    Article  CAS  PubMed  Google Scholar 

  12. Brooks BR, Miller RG, Swash M, Munsat TL; World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1(5): 293–299

    Article  CAS  PubMed  Google Scholar 

  13. Cui L, Pu C, Fan D. Chinese guidelines for diagnosis and treatment of amyotrophic lateral sclerosis. Chin J Neurol (Zhonghua Shen Jing Ke Za Zhi) 2012; 45(7): 531–533 (in Chinese)

    Google Scholar 

  14. Kraemer M, Buerger M, Berlit P. Diagnostic problems and delay of diagnosis in amyotrophic lateral sclerosis. Clin Neurol Neurosurg 2010; 112(2): 103–105

    Article  PubMed  Google Scholar 

  15. Xu X, Shen D, Gao Y, Zhou Q, Ni Y, Meng H, Shi H, Le W, Chen S, Chen S. A perspective on therapies for amyotrophic lateral sclerosis: can disease progression be curbed? Transl Neurodegener 2021; 10(1): 29

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hensel N, Claus P. The actin cytoskeleton in SMA and ALS: how does it contribute to motoneuron degeneration? Neuroscientist 2018; 24(1): 54–72

    Article  CAS  PubMed  Google Scholar 

  17. Oberstadt M, Claßen J, Arendt T, Holzer M. TDP-43 and cytoskeletal proteins in ALS. Mol Neurobiol 2018; 55(4): 3143–3151

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, Chen S, Song L, Tang Y, Shen Y, Jia L, Le W. MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy 2014; 10(4): 588–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou QM, Zhang JJ, Li S, Chen S, Le WD. n-butylidenephthalide treatment prolongs life span and attenuates motor neuron loss in SOD1G93A mouse model of amyotrophic lateral sclerosis. CNS Neurosci Ther 2017; 23(5): 375–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang JJ, Zhou QM, Chen S, Le WD. Repurposing carbamazepine for the treatment of amyotrophic lateral sclerosis in SOD1-G93A mouse model. CNS Neurosci Ther 2018; 24(12): 1163–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martorella M, Barford K, Winkler B, Deppmann CD. Emergent role of coronin-1a in neuronal signaling. Vitam Horm 2017; 104: 113–131

    Article  CAS  PubMed  Google Scholar 

  22. Suo D, Park J, Harrington AW, Zweifel LS, Mihalas S, Deppmann CD. Coronin-1 is a neurotrophin endosomal effector that is required for developmental competition for survival. Nat Neurosci 2014; 17(1): 36–45

    Article  CAS  PubMed  Google Scholar 

  23. BoseDasgupta S, Pieters J. Coronin 1 trimerization is essential to protect pathogenic mycobacteria within macrophages from lysosomal delivery. FEBS Lett 2014; 588(21): 3898–3905

    Article  CAS  PubMed  Google Scholar 

  24. Seto S, Tsujimura K, Koide Y. Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages. Cell Microbiol 2012; 14(5): 710–727

    Article  CAS  PubMed  Google Scholar 

  25. Jayachandran R, Pieters J. Regulation of immune cell homeostasis and function by coronin 1. Int Immunopharmacol 2015; 28(2): 825–828

    Article  CAS  PubMed  Google Scholar 

  26. Jayachandran R, Sundaramurthy V, Combaluzier B, Mueller P, Korf H, Huygen K, Miyazaki T, Albrecht I, Massner J, Pieters J. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 2007; 130(1): 37–50

    Article  CAS  PubMed  Google Scholar 

  27. Tong Y, Song F. Intracellular calcium signaling regulates autophagy via calcineurin-mediated TFEB dephosphorylation. Autophagy 2015; 11(7): 1192–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu YX, Han XS, Jing Q. Ca(2+) ion and autophagy. In: Qin ZH. Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Singapore: Springer, 2019: 151–166

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Clinical Research Plan of SHDC (No. SHDC2020CR2027B), Shanghai Young Top-notch Talent Support Program, Double Hundred Talents Support Program of Shanghai Jiao Tong University School of Medicine, and the projects sponsored by the development fund for Shanghai talents. The funders had no role in the design and conduction of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Liu, Weidong Le or Sheng Chen.

Ethics declarations

Qinming Zhou, Lu He, Jin Hu, Yining Gao, Dingding Shen, You Ni, Yuening Qin, Huafeng Liang, Jun Liu, Weidong Le, and Sheng Chen declare that they have no conflict of interest. This study was approved by the Ethics Committee of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. We committed to protecting the patients’ privacy and complying with the Helsinki Declaration.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., He, L., Hu, J. et al. Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target. Front. Med. 16, 723–735 (2022). https://doi.org/10.1007/s11684-021-0905-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-021-0905-y

Keywords

Navigation