Skip to main content

Dual Role of Autophagy in Neurodegenerative Diseases: The Case of Amyotrophic Lateral Sclerosis

  • Chapter
  • First Online:
Toxicity and Autophagy in Neurodegenerative Disorders

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 9))

Abstract

Amyotrophic lateral sclerosis (ALS) is an adult onset and fatal neurodegenerative disease. A major histophatological hallmark of the disease patient-derived tissue and ALS mouse models is the presence of protein aggregates containing misfolded specific proteins. Strategies to clear out these abnormal protein species are proposed as a possible target for disease intervention. Autophagy, a catabolic route that selective degradates abnormally-folded proteins by the lysosomal pathway, has emerged as an attractive target to treat neurodegenerative diseases, like ALS. Accumulating evidence indicates that autophagy impairment also occurs in ALS and can contribute to the neurodegenerative condition. In this article we discuss the evidence involving autophagy alteration associated to mutant ALS linked phenotype and the evidence that place autophagy as a therapeutic opportunity to treat this neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci. 2014;15(4):233–49.

    CAS  PubMed  Google Scholar 

  2. Matus S, Glimcher LH, Hetz C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr Opin Cell Biol. 2011;23(2):239–52.

    CAS  PubMed  Google Scholar 

  3. Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4(1):49–60.

    CAS  PubMed  Google Scholar 

  4. Vidal R, Matus S, Bargsted L, Hetz C. Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci. 2014;35:583–91.

    CAS  PubMed  Google Scholar 

  5. Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans. 2013;41(5):1103–30.

    CAS  PubMed  Google Scholar 

  6. Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ. 2009;16(1):46–56.

    CAS  PubMed  Google Scholar 

  7. Ching JK, Elizabeth SV, Ju JS, Lusk C, Pittman SK, Weihl CC. mTOR dysfunction contributes to vacuolar pathology and weakness in valosin-containing protein associated inclusion body myopathy. Hum Mol Genet. 2013;22(6):1167–79.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Wang IF, Guo BS, Liu YC, Wu CC, Yang CH, Tsai KJ, et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A. 2012;109(37):15024–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Zhang X, Li L, Chen S, Yang D, Wang Y, Wang Z, et al. Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy. 2011;7(4):412–25.

    CAS  PubMed  Google Scholar 

  10. Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G, et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy. 2013;9(9):1308–20.

    CAS  PubMed  Google Scholar 

  11. Zhang X, Chen S, Song L, Tang Y, Shen Y, Jia L, et al. MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy. 2014;10(4):588–602.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Barmada SJ, Serio A, Arjun A, Bilican B, Daub A, Ando DM, et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol. 2014;10(8):677–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Marino G, Madeo F, Kroemer G. Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol. 2011;23(2):198–206.

    CAS  PubMed  Google Scholar 

  14. Hetz C, Thielen P, Matus S, Nassif M, Court F, Kiffin R, et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 2009;23(19):2294–306.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Nassif M, Valenzuela V, Rojas-Rivera D, Vidal R, Matus S, Castillo K, et al. Pathogenic role of BECN1/Beclin 1 in the development of amyotrophic lateral sclerosis. Autophagy. 2014;10(7):1256–71.

    CAS  PubMed  Google Scholar 

  16. Mulder DW. Clinical limits of amyotrophic lateral sclerosis. Adv Neurol. 1982;36:15–22.

    CAS  PubMed  Google Scholar 

  17. Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci. 2006;7(9):710–23.

    CAS  PubMed  Google Scholar 

  18. Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344(22):1688–700.

    CAS  PubMed  Google Scholar 

  19. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol. 2011;7(11):603–15.

    CAS  PubMed  Google Scholar 

  22. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–3.

    CAS  PubMed  Google Scholar 

  23. Ince PG. Amyotrophic lateral sclerosis. In: Brown RHJ, Meininger K, Swash M, Editors. Neuropathology. London: Martin Dunitz; 2000. pp. 83–112.

    Google Scholar 

  24. Kushner PD, Stephenson DT, Wright S. Reactive astrogliosis is widespread in the subcortical white matter of amyotrophic lateral sclerosis brain. J Neuropathol Exp Neurol. 1991;50(3):263–77.

    CAS  PubMed  Google Scholar 

  25. Murayama S, Inoue K, Kawakami H, Bouldin TW, Suzuki K. A unique pattern of astrocytosis in the primary motor area in amyotrophic lateral sclerosis. Acta Neuropathol. 1991;82(6):456–61.

    CAS  PubMed  Google Scholar 

  26. Nagy D, Kato T, Kushner PD. Reactive astrocytes are widespread in the cortical gray matter of amyotrophic lateral sclerosis. J Neurosci Res. 1994;38(3):336–47.

    CAS  PubMed  Google Scholar 

  27. Tsao W, Jeong YH, Lin S, Ling J, Price DL, Chiang PM, et al. Rodent models of TDP-43: recent advances. Brain Res. 2012;1462:26–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Turner BJ, Talbot K. Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol. 2008;85(1):94–134.

    CAS  PubMed  Google Scholar 

  29. Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med. 1994;330(9):585–91.

    CAS  PubMed  Google Scholar 

  30. Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol. 2004;14(2):70–7.

    PubMed  Google Scholar 

  31. Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci. 2005;118(Pt 1):7–18.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. He C, Levine B. The Beclin 1 interactome. Curr Opin Cell Biol. 2010;22(2):140–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2001;2(4):330–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.

    CAS  PubMed  Google Scholar 

  37. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.

    CAS  PubMed  Google Scholar 

  38. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Sarkar S. Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington’s disease and other neurodegenerative disorders. Drug Discover Today Technol. 2013;10(1):e137–44.

    Google Scholar 

  40. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem. 2007;282(8):5641–52.

    CAS  PubMed  Google Scholar 

  41. Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, et al. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008;4(5):295–305.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Criollo A, Vicencio JM, Tasdemir E, Maiuri MC, Lavandero S, Kroemer G. The inositol trisphosphate receptor in the control of autophagy. Autophagy. 2007;3(4):350–3.

    CAS  PubMed  Google Scholar 

  44. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006;26(24):9220–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Castillo K, Rojas-Rivera D, Lisbona F, Caballero B, Nassif M, Court FA, et al. BAX inhibitor-1 regulates autophagy by controlling the IRE1alpha branch of the unfolded protein response. EMBO J. 2011;30(21):4465–78.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Vidal RL, Hetz C. Unspliced XBP1 controls autophagy through FoxO1. Cell Res. 2013;23(4):463–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885–9.

    CAS  PubMed  Google Scholar 

  48. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–4.

    CAS  PubMed  Google Scholar 

  49. Nassif M, Hetz C. Targeting autophagy in ALS: a complex mission. Autophagy. 2011;7(4):450–3.

    PubMed  Google Scholar 

  50. Sridhar S, Botbol Y, Macian F, Cuervo AM. Autophagy and disease: always two sides to a problem. J Pathol. 2012;226(2):255–73.

    PubMed Central  PubMed  Google Scholar 

  51. Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci. 2010;13(7):805–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis. 2008;29(1):132–41.

    CAS  PubMed  Google Scholar 

  53. Wu JC, Qi L, Wang Y, Kegel KB, Yoder J, Difiglia M, et al. The regulation of N-terminal Huntingtin (Htt552) accumulation by Beclin1. Acta Pharmacol Sin. 2012;33(6):743–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E, et al. Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma. 2005;22(7):750–62.

    PubMed  Google Scholar 

  55. Wills J, Credle J, Oaks AW, Duka V, Lee JH, Jones J, et al. Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways. PLoS ONE. 2012;7(1):e30745.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Pacheco CD, Lieberman AP. Lipid trafficking defects increase Beclin-1 and activate autophagy in Niemann-Pick type C disease. Autophagy. 2007;3(5):487–9.

    CAS  PubMed  Google Scholar 

  57. Takamura A, Higaki K, Kajimaki K, Otsuka S, Ninomiya H, Matsuda J, et al. Enhanced autophagy and mitochondrial aberrations in murine G(M1)-gangliosidosis. Biochem Biophys Res Commun. 2008;367(3):616–22.

    CAS  PubMed  Google Scholar 

  58. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature. 2004;431(7010):805–10.

    CAS  PubMed  Google Scholar 

  59. Brotherton TE, Li Y, Glass JD. Cellular toxicity of mutant SOD1 protein is linked to an easily soluble, non-aggregated form in vitro. Neurobiol Dis. 2013;49:c49–56.

    Google Scholar 

  60. Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem. 2006;281(20):14474–85.

    CAS  PubMed  Google Scholar 

  61. Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477(7363):211–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Gellera C, Tiloca C, Del Bo R, Corrado L, Pensato V, Agostini J, et al. Ubiquilin 2 mutations in Italian patients with amyotrophic lateral sclerosis and frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2013;84(2):183–7.

    PubMed  Google Scholar 

  63. Williams KL, Warraich ST, Yang S, Solski JA, Fernando R, Rouleau GA, et al. UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis. Neurobiol Aging. 2012;33(10):2527 e3–10.

    Google Scholar 

  64. Fecto F, Yan J, Vemula SP, Liu E, Yang Y, Chen W, et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol. 2011;68(11):1440–6.

    PubMed  Google Scholar 

  65. Rubino E, Rainero I, Chio A, Rogaeva E, Galimberti D, Fenoglio P, et al. SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology. 2012;79(15):1556–62.

    PubMed Central  PubMed  Google Scholar 

  66. Teyssou E, Takeda T, Lebon V, Boillee S, Doukoure B, Bataillon G, et al. Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol. 2013;125(4):511–22.

    CAS  PubMed  Google Scholar 

  67. Del Bo R, Tiloca C, Pensato V, Corrado L, Ratti A, Ticozzi N, et al. Novel optineurin mutations in patients with familial and sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2011;82(11):1239–43.

    PubMed  Google Scholar 

  68. Iida A, Hosono N, Sano M, Kamei T, Oshima S, Tokuda T, et al. Optineurin mutations in Japanese amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2012;83(2):233–5.

    PubMed  Google Scholar 

  69. Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010;465(7295):223–6.

    CAS  PubMed  Google Scholar 

  70. van Blitterswijk M van Vught PW, van Es MA, Schelhaas HJ, van der Kooi AJ, de Visser M, et al. Novel optineurin mutations in sporadic amyotrophic lateral sclerosis patients. Neurobiol Aging. 2012;33(5):1016 e1–7.

    Google Scholar 

  71. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68(5):857–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Cox LE, Ferraiuolo L, Goodall EF, Heath PR, Higginbottom A, Mortiboys H, et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS ONE. 2010;5(3):e9872.

    PubMed Central  PubMed  Google Scholar 

  73. Parkinson N, Ince PG, Smith MO, Highley R, Skibinski G, Andersen PM, et al. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology. 2006;67(6):1074–7.

    CAS  PubMed  Google Scholar 

  74. Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet. 2009;84(1):85–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Gal J, Strom AL, Kwinter DM, Kilty R, Zhang J, Shi P, et al. Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J Neurochem. 2009;111(4):1062–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Brady OA, Meng P, Zheng Y, Mao Y, Hu F. Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1. J Neurochem. 2011;116(2):248–59.

    CAS  PubMed  Google Scholar 

  77. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science. 2011;333(6039):228–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Meyer H, Weihl CC. The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J Cell Sci. 2014;127:3877–83.

    CAS  PubMed  Google Scholar 

  79. Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, et al. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol. 2009;187(6):875–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36(4):377–81.

    CAS  PubMed  Google Scholar 

  81. Raiborg C, Stenmark H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature. 2009;458(7237):445–52.

    CAS  PubMed  Google Scholar 

  82. Urwin H, Authier A, Nielsen JE, Metcalf D, Powell C, Froud K, et al. Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Hum Mol Genet. 2010;19(11):2228–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. van der Zee J, Urwin H, Engelborghs S, Bruyland M, Vandenberghe R, Dermaut B, et al. CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. Hum Mol Genet. 2008;17(2):313–22.

    PubMed  Google Scholar 

  84. Momeni P, Rogaeva E, Van Deerlin V, Yuan W, Grafman J, Tierney M, et al. Genetic variability in CHMP2B and frontotemporal dementia. Neurodegener Dis. 2006;3(3):129–33.

    CAS  PubMed  Google Scholar 

  85. Ghazi-Noori S, Froud KE, Mizielinska S, Powell C, Smidak M, Fernandez de Marco M, et al. Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. Brain. 2012;135(Pt 3):819–32.

    PubMed  Google Scholar 

  86. Kon T, Mori F, Tanji K, Miki Y, Toyoshima Y, Yoshida M, et al. ALS-associated protein FIG4 is localized in Pick and Lewy bodies, and also neuronal nuclear inclusions, in polyglutamine and intranuclear inclusion body diseases. Neuropathology. 2014;34(1):19–26.

    CAS  PubMed  Google Scholar 

  87. Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, et al. Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature. 2007;448(7149):68–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Zhang X, Chow CY, Sahenk Z, Shy ME, Meisler MH, Li J. Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain. 2008;131(Pt 8):1990–2001.

    PubMed Central  PubMed  Google Scholar 

  89. Fleming A, Noda T, Yoshimori T, Rubinsztein DC. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol. 2011;7(1):9–17.

    CAS  PubMed  Google Scholar 

  90. Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11(9):709–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36(6):585–95.

    CAS  PubMed  Google Scholar 

  92. Bhattacharya A, Bokov A, Muller FL, Jernigan AL, Maslin K, Diaz V, et al. Dietary restriction but not rapamycin extends disease onset and survival of the H46R/H48Q mouse model of ALS. Neurobiol Aging. 2012;33(8):1829–32.

    CAS  PubMed  Google Scholar 

  93. Staats KA, Hernandez S, Schonefeldt S, Bento-Abreu A, Dooley J, Van Damme P, et al. Rapamycin increases survival in ALS mice lacking mature lymphocytes. Mol Neurodegener. 2013;8:31.

    PubMed Central  PubMed  Google Scholar 

  94. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med. 2004;10(2):148–54.

    CAS  PubMed  Google Scholar 

  95. Perucho J, Casarejos MJ, Gomez A, Solano RM, de Yebenes JG, Mena MA. Trehalose protects from aggravation of amyloid pathology induced by isoflurane anesthesia in APP(swe) mutant mice. Curr Alzheimer Res. 2012;9(3):334–43.

    CAS  PubMed  Google Scholar 

  96. Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ, Solano RM, Gomez A, Perucho J, et al. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis. 2010;39(3):423–38.

    CAS  PubMed  Google Scholar 

  97. Davies JE, Sarkar S, Rubinsztein DC. Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy. Hum Mol Genet. 2006;15(1):23–31.

    CAS  PubMed  Google Scholar 

  98. Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain. 2012;135(Pt 7):2169–77.

    PubMed Central  PubMed  Google Scholar 

  99. Castillo K, Valenzuela V, Matus S, Nassif M, Onate M, Fuentealba Y, et al. Measurement of autophagy flux in the nervous system in vivo. Cell Death Dis. 2013;4:e917.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Matus S, Valenzuela V, Hetz C. A new method to measure autophagy flux in the nervous system. Autophagy. 2014;10(4):710–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 2008;319(5865):916–9.

    CAS  PubMed  Google Scholar 

  102. Vidal RL, Figueroa A, Court FA, Thielen P, Molina C, Wirth C, et al. Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum Mol Genet. 2012;21(10):2245–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Matus S, Medinas DB, Hetz C. Common ground: stem cell approaches find shared pathways underlying ALS. Cell Stem Cell. 2014;14(6):697–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Millennium Institute No. P09-015-F, CONICYT grant USA2013-0003, ALS Therapy Alliance, and Muscular Dystrophy Association. We also thank FONDECYT 1140549, ECOS-CONICYT C13S02, The Michael J. Fox Foundation for Parkinson Research, Alzheimer’s Disease Association, and Foundation COPEC-UC (CH), Ring Initiative ACT1109, FONDEF grant No. D11I1007 (CH and SM), FONDECYT 11121524 (SM), CONICYT PAI 7912010006 (RLV) and CONICYT Master’s fellowship (LB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Hetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bargsted, L., Vidal, R., Hetz, C., Matus, S. (2015). Dual Role of Autophagy in Neurodegenerative Diseases: The Case of Amyotrophic Lateral Sclerosis. In: Fuentes, J. (eds) Toxicity and Autophagy in Neurodegenerative Disorders. Current Topics in Neurotoxicity, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-13939-5_4

Download citation

Publish with us

Policies and ethics