Skip to main content
Log in

Annealing Effect of High-Density Pulsed Electric Current Treatment on Cold-Rolled 6061 Aluminum Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study introduces a novel method of high-density pulsed electric current (HDPEC) as a substitute for the conventional annealing heat treatment process to relieve strain hardening in 6061 aluminum alloy (A6061) during the manufacturing process. The study investigates the effects of different HDPEC treatments on the strain-hardening relief of cold-rolled A6061, with a comparison to the traditional annealing heat treatment. The results reveal that the HDPEC-treated samples demonstrate a remarkable reduction of approximately 50% in strength and a considerable increase of approximately 200% in ductility, indicating complete strain-hardening relief of cold-rolled A6061. Consequently, the HDPEC treatment is faster and more efficient than the traditional annealing heat treatment. Furthermore, the HDPEC-treated samples display equivalent mechanical properties as the untreated ones after the final precipitation heat treatment, indicating that the HDPEC treatment has no detrimental effect on the materials. The microstructural characterization demonstrates that the HDPEC-induced microstructural modification through dislocation elimination and grain recovery leads to the strain-hardening relief of cold-rolled A6061. These findings suggest that the HDPEC treatment can even replace the hot-forming process of A6061, contributing to low-cost and high-efficient manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. O. Grydin, M. Stolbchenko, F. Nürnberger, and M. Schaper, Influence of Hot Deformation on Mechanical Properties and Microstructure of a Twin-Roll Cast Aluminium Alloy EN AW-6082, J. Mater. Eng. Perform., 2014, 23, p 937–943. https://doi.org/10.1007/s11665-013-0816-4

    Article  CAS  Google Scholar 

  2. K. Zhao, R. Fan, and L. Wang, The Effect of Electric Current and Strain Rate on Serrated Flow of Sheet Aluminum Alloy 5754, J. Mater. Eng. Perform., 2016, 25, p 781–789. https://doi.org/10.1007/s11665-016-1913-y

    Article  CAS  Google Scholar 

  3. O.A. Troitskii, Electromechanical Effect in Metals, ZhETF Pisma Redaktsiiu., 1969, 10, p 18–22.

    CAS  Google Scholar 

  4. Z.S. Xu, Z.H. Lai, and Y.X. Chen, Effect of Electric Current on the Recrystallization Behavior of Cold Worked α—Ti, Scr. Metall., 1988, 22, p 187–190. https://doi.org/10.1016/S0036-9748(88)80331-4

    Article  CAS  Google Scholar 

  5. S. Gu, Y. Cui, Y. Kimura, Y. Toku, and Y. Ju, Relief of Strain Hardening in Deformed Inconel 718 by High-Density Pulsed Electric Current, J. Mater. Sci., 2021, 56, p 16686–16696. https://doi.org/10.1007/s10853-021-06344-9

    Article  CAS  Google Scholar 

  6. S. Gu, Y. Cui, S. Yoon, Z. Wang, Y. Kimura, Y. Toku, and Y. Ju, Rapid Anisotropy Recovery in Deformed FCC Metals by High-Density Pulsed Electric Current Treatment, Vacuum, 2022, 197, p 110855. https://doi.org/10.1016/j.vacuum.2021.110855

    Article  CAS  Google Scholar 

  7. Y.S. Zheng, G.Y. Tang, J. Kuang, and X.P. Zheng, Effect of Electropulse on Solid Solution Treatment of 6061 Aluminum Alloy, J. Alloy. Compd., 2014, 615, p 849–853. https://doi.org/10.1016/j.jallcom.2014.07.062

    Article  CAS  Google Scholar 

  8. T.A. Perkins, T.J. Kronenberger, and J.T. Roth, Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working, J. Manuf. Sci. Eng., 2007, 129, p 84–94. https://doi.org/10.1115/1.2386164

    Article  Google Scholar 

  9. Y. Jiang, G. Tang, C. Shek, J. Xie, Z. Xu, and Z. Zhang, Mechanism of Electropulsing Induced Recrystallization in a Cold-Rolled Mg-9Al-1Zn Alloy, J. Alloy. Compd., 2012, 536, p 94–105. https://doi.org/10.1016/j.jallcom.2012.05.014

    Article  CAS  Google Scholar 

  10. Y. Tang, A. Hosoi, Y. Morita, and Y. Ju, Restoration of Fatigue Damage in Stainless Steel by High-Density Electric Current, Int. J. Fatigue, 2013, 56, p 69–74. https://doi.org/10.1016/j.ijfatigue.2013.08.012

    Article  CAS  Google Scholar 

  11. W. Jin, J. Fan, H. Zhang, Y. Liu, H. Dong, and B. Xu, Microstructure, Mechanical Properties and Static Recrystallization Behavior of the Rolled ZK60 Magnesium Alloy Sheets Processed by Electropulsing Treatment, J. Alloy. Compd., 2015, 646, p 1–9. https://doi.org/10.1016/j.jallcom.2015.04.196

    Article  CAS  Google Scholar 

  12. H. Conrad, Electroplasticity in Metals and Ceramics, Mater. Sci. Eng. A, 2000, 287, p 276–287. https://doi.org/10.1016/S0921-5093(00)00786-3

    Article  Google Scholar 

  13. C. Zhou, L. Zhan, C. Liu, and M. Huang, Insights into Electron Wind Force by a Helical Dislocation Reconfiguration, IScience., 2023, 26, p 106870. https://doi.org/10.1016/j.isci.2023.106870

    Article  CAS  Google Scholar 

  14. C. Rudolf, R. Goswami, W. Kang, and J. Thomas, Effects of Electric Current on the Plastic Deformation Behavior of Pure Copper Iron, and Titanium, Acta Mater., 2021, 209, p 116776. https://doi.org/10.1016/j.actamat.2021.116776

    Article  CAS  Google Scholar 

  15. S. Zhao, R. Zhang, Y. Chong, X. Li, A. Abu-Odeh, E. Rothchild, D.C. Chrzan, M. Asta, J.W. Morris, and A.M. Minor, Defect Reconfiguration in a Ti-Al Alloy via Electroplasticity, Nat. Mater., 2020 https://doi.org/10.1038/s41563-020-00817-z

    Article  Google Scholar 

  16. K. Jeong, S.W. Jin, S.G. Kang, J.W. Park, H.J. Jeong, S.T. Hong, S.H. Cho, M.J. Kim, and H.N. Han, Athermally Enhanced Recrystallization Kinetics of Ultra-Low Carbon Steel via Electric Current Treatment, Acta Mater., 2022, 232, p 117925. https://doi.org/10.1016/j.actamat.2022.117925

    Article  CAS  Google Scholar 

  17. M.J. Kim, S. Yoon, S. Park, H.J. Jeong, J.W. Park, K. Kim, J. Jo, T. Heo, S.T. Hong, S.H. Cho, Y.K. Kwon, I.S. Choi, M. Kim, and H.N. Han, Elucidating the Origin of Electroplasticity in Metallic Materials, Appl. Mater. Today., 2020, 21, p 100874. https://doi.org/10.1016/j.apmt.2020.100874

    Article  Google Scholar 

  18. S. Birinci, S. Basit, and N. Maraşlı, Influences of Directions and Magnitudes of Static Electrical Field on Microstructure and Mechanical Properties for Al-Si Eutectic Alloy, J. Mater. Eng. Perform., 2022, 6, p 5070–5079. https://doi.org/10.1007/s11665-021-06564-9

    Article  CAS  Google Scholar 

  19. W. Zhang, M.L. Sui, Y.Z. Zhou, and D.X. Li, Evolution of Microstructures in Materials Induced by Electropulsing, Micron, 2003, 34, p 189–198. https://doi.org/10.1016/S0968-4328(03)00025-8

    Article  CAS  Google Scholar 

  20. T. Shintani and Y. Murata, Evaluation of the Dislocation Density and Dislocation Character in Cold Rolled Type 304 Steel Determined by Profile Analysis of x-ray Diffraction, Acta Mater., 2011, 59, p 4314–4322. https://doi.org/10.1016/j.actamat.2011.03.055

    Article  CAS  Google Scholar 

  21. T. Ungár, I. Dragomir, Á. Révész, and A. Borbély, The Contrast Factors of Dislocations in Cubic Crystals: the Dislocation Model of Strain Anisotropy in Practice, J. Appl. Crystallogr., 1999, 32, p 992–1002. https://doi.org/10.1107/S0021889899009334

    Article  Google Scholar 

  22. M. Jamal, S.J. Asadabadi, I. Ahmad, and H.R. Aliabad, Elastic Constants of Cubic Crystals, Comput. Mater. Sci., 2014, 95(592), p 9. https://doi.org/10.1016/j.commatsci.2014.08.027

    Article  CAS  Google Scholar 

  23. Y. Zhang, J.P. Liu, S.Y. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, J.W. Qiao, and Y.L. Wang, Serration and Noise Behaviors in Materials, Prog. Mater Sci., 2017, 90, p 358–460. https://doi.org/10.1016/j.pmatsci.2017.06.004

    Article  CAS  Google Scholar 

  24. Z. Sajuri, N.F. Mohamad Selamat, A.H. Baghdadi, A. Rajabi, M.Z. Omar, A.H. Kokabi, and J. Syarif, Cold-Rolling Strain Hardening Effect on the Microstructure, Serration-Flow Behaviour and Dislocation Density of Friction Stir Welded AA5083, Metals., 2020, 10, p 70. https://doi.org/10.3390/met10010070

    Article  CAS  Google Scholar 

  25. G.I. Taylor, The mechanism of plastic deformation of crystals Part I Theoretical, Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character, 1934, 145(855), p 362–387.

    CAS  Google Scholar 

  26. P. Rodriguez, Sixty Years of Dislocations, Bull. Mater. Sci., 1996, 19, p 857–872. https://doi.org/10.1007/BF02744623

    Article  CAS  Google Scholar 

  27. E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. Sect. B., 1951, 64(9), p 747. https://doi.org/10.1088/0370-1301/64/9/303

    Article  Google Scholar 

  28. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25.

    CAS  Google Scholar 

  29. H. Conrad, A.F. Sprecher, The Electroplastic Effect in Metals, in: Dislocations in Solids, Elsevier, 497–541 (1989)

  30. F.R.N. Nabarro, Theory of Crystal Dislocations, Clarendon Press, Oxford, 1967.

    Google Scholar 

  31. R.A. Brown, Electrical resistivity of dislocations in metals, J. Phys. F Met. Phys., 1977, 7, p 1283–1295. https://doi.org/10.1088/0305-4608/7/7/026

    Article  CAS  Google Scholar 

  32. R. Peierls, The Size of a Dislocation, Proc. Phys. Soc., 1940, 52, p 34. https://doi.org/10.1088/0959-5309/52/1/305

    Article  Google Scholar 

  33. F.R.N. Nabarro, Dislocations in a Simple Cubic Lattice, Proc. Phys. Soc., 1947, 59, p 256. https://doi.org/10.1088/0959-5309/59/2/309

    Article  CAS  Google Scholar 

  34. T. Suzuki and S. Takeuchi, Correlation of Peierls-Nabarro Stress with Crystal Structure, Rev. Phys. Appl. Paris, 1988, 23, p 685–685. https://doi.org/10.1051/rphysap:01988002304068500

    Article  Google Scholar 

  35. Y. Kamimura, K. Edagawa, and S. Takeuchi, Experimental Evaluation of the Peierls Stresses in a Variety of Crystals and their Relation to the Crystal Structure, Acta Mater., 2013, 61, p 294–309. https://doi.org/10.1016/j.actamat.2012.09.059

    Article  CAS  Google Scholar 

  36. M. Janovská, H. Seiner, J. CIŽEK, P. Sedlák, and M. LAND, Evolution of Elastic Properties of Cold Sprayed Metal Coatings at Elevated Temperatures, Acta Phys, Pol. A., 2018, 134, p 794–798. https://doi.org/10.12693/APhysPolA.134.794

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant-in-Aid for Challenging Research (Pioneering) 20K20531. The authors are also very grateful to Kobe Steel Ltd. and UACJ corporation for providing cold-rolled aluminum alloy sheets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaoming, Y., Shaojie, G., Sungmin, Y. et al. Annealing Effect of High-Density Pulsed Electric Current Treatment on Cold-Rolled 6061 Aluminum Alloy. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08522-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08522-z

Keywords

Navigation