Skip to main content
Log in

Effects of Recrystallization on the Microstructure and Mechanical Properties of Cold-Rolled Ti-B20 Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The static recrystallization behaviour and microstructure evolution of cold rolled (CR) Ti-B20 alloy with high strength during annealing were investigated using electron back-scattered diffraction and x-ray diffraction methods. Results suggest that the deformation bands and grain boundaries in the CR Ti-B20 alloy became a preferred nucleation position of recrystallized grains, which led to the formation of an uneven microstructure at the initial stage of annealing. After a given annealing time, the nucleation and growth rate of recrystallized grains accelerated with increasing annealing temperature. The relationship among the volume fraction of recrystallized grains, annealing temperature and annealing time can be described by the Johnson–Mehl–Avrami–Kolmogorov equations \(\left( {X_{800} = 1 - \exp ( - {0}{\text{.00011}}\, * \,t^{1.64} } \right)\) and \(X_{820} = 1 - \exp ( - {0}{\text{.00009}}\, * \,t^{1.98} )\). For the CR sheet specimens, a typical cold texture was formed, such as γ-fiber components of {111} < 110 > and {111} < 112 > textures. When complete recrystallization occurs for the CR sheet, the texture component primarily consists of {112} < 021 > for the CR sheet annealed at 800 and 820 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Devaraj, V.V. Joshi, A. Srivastava et al., A Low-Cost Hierarchical Nanostructured Beta-Titanium Alloy with High Strength, Nat. Commun., 2016, 7(11176), p 1–9.

    Google Scholar 

  2. Q.M. Liu, Z.H. Zhang, S.F. Liu et al., Application and Development of Titanium Alloy Inaerospace and Military Hardware, J. Iron. Steel. Res. Int., 2015, 29(29), p 4–10.

    Google Scholar 

  3. X. Xu, L.M. Dong, H.B. Ba et al., Hot Deformation Behavior and Microstructural Evolution of Beta C Titanium Alloy in β Phase Field, Trans. Nonferrous. Met. Soc. China., 2016, 26(11), p 2874–2882.

    Article  CAS  Google Scholar 

  4. C.W. Huang, Y.Q. Zhao, S.W. Xin et al., Effect of Microstructure on High Cycle Fatigue Behavior of Ti–5Al–5Mo–5V–3Cr–1Zr Titanium Alloy, Int. J. Fatigue., 2017, 94, p 30–40.

    Article  CAS  Google Scholar 

  5. Z. Hu, D. Yi, H. Liu et al., New Type of Macrozone in a Near-β Titanium Alloy Ti-5Al-5Mo-5V-1Cr-1Fe, Mater. Let., 2019, 238, p 6–9.

    Article  CAS  Google Scholar 

  6. D. Chalapathi, P.V. Sivaprasad, and A.K. Kanjarla, Role of Deformation Twinning and Second Phase on the Texture Evolution in a Duplex Stainless Steel During Cold Rolling: Experimental and Modelling Study, Mater. Sci. Eng. A, 2020, 780, p 139155.

    Article  CAS  Google Scholar 

  7. B. Dwa, B. Qfa, A. Xc et al., Texture Evolution and Slip Mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr Dual-Phase Alloy During Cold Rolling Based on Multiscale Crystal Plasticity Finite Element Model, J. Mate. Sci. Technol., 2021, 111, p 76–87.

    Google Scholar 

  8. Y.C. Chen, S.W. Wang et al., Effect of Cold Rolling on Structure and Tensile Properties of cast Ti-7.5Mo Alloy, Mater. Sci. Eng. A., 2015, 631, p 52–66.

    Article  Google Scholar 

  9. Z. Zhang, W. Wan, J. Cao et al., Effect of Cold Deformation on Microstructure and Mechanical Properties of Ti13Nb13Zr Titanium Alloy, Hot Work Technol, 2009, 38(22), p 66–81.

    Google Scholar 

  10. T.W. Xu, J.S. Li, S.S. Zhang et al., Cold Deformation Behavior of the Ti-15Mo-3Al-2.7Nb-0.2Si Alloy and Its Effect on Alpha Precipitation and Tensile Properties in Aging Treatment, J. Alloys. Compd., 2016, 682, p 404–411.

    Article  CAS  Google Scholar 

  11. A.M. Ferreira, M.A. Martorano, N.D. Lima et al., Effects of Recovery and Recrystallization on Microstructure and Texture During Annealing of a Cold Deformed Superconducting Nb-50(wt.)%Ti Alloy, J. Alloys. Compd., 2021, 887, p 887–899.

    Article  Google Scholar 

  12. C. Lan, Y. Wu, L.L. Guo et al., Microstructure, Texture Evolution and Mechanical Properties of Cold Rolled Ti-32.5Nb-6.8Zr-2.7Sn Biomedical Beta Titanium Alloy, J. Mater. Eng. Technol., 2018, 34, p 788–792.

    CAS  Google Scholar 

  13. S. Guo, Q.K. Meng, X.N. Cheng et al., Microstructural Evolution and Mechanical Behavior of Metastable β-type Ti-30Nb-1Mo-4Sn Alloy with Low Modulus and High Strengt, Prog. Nat. Sci., 2015, 25(05), p 414–418.

    Article  CAS  Google Scholar 

  14. X.D. Huo, X.P. Mao, S.X. Liu et al., Effect of Annealing Temperature on Recrystallization Behavior of Cold Rolled Ti-Microalloyed Steel, J. Iron. Steel. Res. Int., 2013, 20(9), p 105–110.

    Article  CAS  Google Scholar 

  15. C. Lan, W. Yu, and L. Guo, Effects of Cold Rolling on Microstructure, Texture Evolution and Mechanical Properties of Ti-32.5Nb-6.8Zr-2.7Sn-0.30 Alloy for Biomedical Applications, Mater. Sci. Eng. A., 2017, 690, p 170–176.

    Article  CAS  Google Scholar 

  16. S.J. Dai, Y. Wan, and F. Chen, Effects of Annealing on the Microstructures and Mechanical Properties of Biomedical Cold-Rolled Ti-Nb-Zr-Mo-Sn alloy, Mate. Charact., 2015, 104, p 15–22.

    Google Scholar 

  17. Q.K. Meng, Y.F. Huo, W. Ma et al., Design and Fabrication of a Low Modulus β-type Ti-Nb-Zr Alloy by Controlling Martensitic Transformation, Rare Met., 2018, 37(9), p 789–796.

    Article  CAS  Google Scholar 

  18. Y. Wen, Y.F. Wang, H. Ran et al., Improving the Mechanical and Tribological Properties of NiTi Alloys by Combining Cryo-Rolling and Post-Annealing, Acta. Metall. Sinica., 2022, 35(2), p 317–325.

    Article  CAS  Google Scholar 

  19. S. Ozan, J. Lin, Y. Zhang et al., Cold Rolling Deformation and Annealing Behavior of a β-type Ti-34Nb-25Zr Titanium Alloy for Biomedical Applications, J. Mater. Eng. Technol., 2019, 9(2), p 2308–2318.

    Google Scholar 

  20. P.K. Rai, D. Naidu, S.K. Vajpa et al., Effect of Cold Rolling and Heat Treatment on Corrosion and Wear Behavior of β-Titanium Ti-25Nb-25Zr Alloy, J. Mater. Eng. Perform., 2021, 30(6), p 4174–4182.

    Article  CAS  Google Scholar 

  21. S.Y. Lu, F.C. Ma, P. Liu et al., Recrystallization Behavior and Super-Elasticity of a Metastable β-Type Ti-21Nb-7Mo-4Sn Alloy During Cold Rolling and Annealing, J. Mater. Eng. Perform., 2018, 27(8), p 3174–3183.

    Article  Google Scholar 

  22. A. Gupta, R.K. Khatirkar, and T. Dandekar, Recrystallization Behavior of a Cold Rolled Ti-15V-3Sn-3Cr-3Al Alloy, J. Mate. Res., 2019, 225, p 1–11.

    Google Scholar 

  23. H. Wang, B.L. Wu, X.H. Du, and Q.G. Xu, Recrystallization Texture of Ti-15–3Alloy with Different Heat Treatments, Mater. Mech. Eng., 2008, 11, p 20–24.

    Google Scholar 

  24. P. Ge, Y.Q. Zhao, and L. Zhou, A New Type Metastable β Titanium Alloy Ti-B20 with High Strength, Rare. Met. Mater. Eng., 2005, 05, p 790–794.

    Google Scholar 

  25. P.P. Ge, S. Xiang, Y.B. Tan et al., Studies on the β→α Phase Transition Kinetics of Ti-3.5Al-5Mo-4V Alloy under Isothermal Conditions by X-ray Diffraction, Metals, 2020, 10(1), p 90.

    Article  CAS  Google Scholar 

  26. S. Hu, Y.B. Tan, W. Shi et al., Microstructure, Texture Evolution and Mechanical Behavior of Ti-35Al-5Mo-4V Titanium Alloy During Hot Rolling in a β Field, Mater. Today Commun., 2022, 31, p 103506.

    Article  CAS  Google Scholar 

  27. S. Hu, S. Xiang, Y.B. Tan et al., Synchronous Enhancement of the Strength and Ductility in a Metastable β-Ti Alloy by a New Refined α Phase Mechanism, J. Alloys. Compd., 2022, 922, p 166227.

    Article  CAS  Google Scholar 

  28. Q. Ran, S. Xiang, Y.B. Tan et al., Improving Mechanical Properties of GH4169 Alloys by Reversing the Deformation and Aging Sequence, Ad. Eng. Mater., 2021, 2100386, p 1–9.

    Google Scholar 

  29. X.M. Ji, P.P. Ge, S. Xiang et al., Effects of Double-Ageing Heat Treatments on the Microstructure and Mechanical Behaviour of a Ti-3.5Al-5Mo-4V Alloy, Mater., 2021, 14(1), p 209.

    Article  CAS  Google Scholar 

  30. A. Ag, A. Rk, and B. Js, A Review of Microstructure and Texture Evolution during Plastic Deformation and Heat Treatment of β-Ti alloys, J. Alloys. Compd., 2022, 899, p 899–912.

    Google Scholar 

  31. X.P. Liang, Q.B. Wu, H.Z. Li et al., Static Recrystallization and Texture Evolution of Cold-Rolled Powder Metallurgy CoCrFeNiN0.07 High-Entropy Alloy, J. Alloy. Compd., 2021, 862, p 158602.

    Article  CAS  Google Scholar 

  32. Z. Du, Y. Ma, F. Liu et al., The Influences of Process Annealing Temperature on Microstructure and Mechanical Properties of near β High Strength Titanium Alloy Sheet, Materials, 2019, 12(9), p 1478.

    Article  CAS  Google Scholar 

  33. Z.F. Qi, Diffusion and Phase Transition in Solid Metals, China Machine Press, 1998, 20–63

  34. X.Y. Zheng, W.B. Xie, L.F. Zeng et al., Achieving High Strength and Ductility in a Heterogeneous-Grain-Structured CrCoNi Alloy Processed by Cryorolling and Subsequent Short-Annealing, Mater. Sci. Eng. A., 2021, 821, p 141610.

    Article  CAS  Google Scholar 

  35. S. Ozan, J. Lin, Y. Li et al., Deformation Mechanism and Mechanical Properties of a Thermomechanically Processed β Ti–28Nb–35.4Zr alloy, J. Mech. Behav. Biomed., 2018, 78, p 224–234.

    Article  CAS  Google Scholar 

  36. H.Z. Guo, H.Q. Liang et al., The Construction of Constitutive Model and Identification of Dynamic Softening Mechanism of High-Temperature Deformation of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Sci. Eng. A., 2014, 615, p 42–50.

    Article  Google Scholar 

  37. D.G. Lee, C. Li, Y. Lee et al., Effect of Temperature on Grain Growth Kinetics of High Strength Ti–2Al–9.2Mo–2Fe Alloy, Thermochim. Acta, 2014, 586, p 66–71.

    Article  CAS  Google Scholar 

  38. C. Wu, S. Huang et al., Microstructure Tailoring and Impact Toughness of a Newly Developed High Strength Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe Alloy, Mater. Charact., 2021, 175, p 111103.

    Article  CAS  Google Scholar 

  39. V.D. Cojocaru, D. Raducanu et al., Effects of Cold-Rolling Deformation on Texture Evolution and Mechanical Properties of Ti–29Nb–9Ta–10Zr Alloy, Mater Sci Eng. A, 2013, 586(6), p 1–10.

    Article  CAS  Google Scholar 

  40. W.A. Johnson, R.F. Mehl, A. Member, Reaction Kinetics in Processes of Nucleation and Growth, Metall. Mater. Tran. A., 2010(11).

  41. T. Furu, Marthinsen, Modelling Recrystallisation, Mater. Sci. Technol., 1990, 66(11), p 1093–1102.

    Article  Google Scholar 

  42. Y.S. Seo, Y.B. Chun, and S.K. Hwang, A 3D Monte-Carlo Simulation Study of Recrystallization Kinetics in Zr with Hypothetical Stored Energy Gradients, Comput. Mater. Sci., 2008, 43, p 512–521.

    Article  CAS  Google Scholar 

  43. S.A. Mantri, D. Choudhuri, T. Alam et al., Tuning the Scale of Alpha Precipitates in Beta-Titanium Alloys for Achieving High Strength, Scr. Mater., 2018, 154, p 139–144.

    Article  CAS  Google Scholar 

  44. T.Y. Li , F.R. Chen, Z.H. Zhang, Effect of Welding Speed on Microstructure and Mechanical Properties of 7A52 Aluminum Alloy by Friction Stir Welding, J. Netshape Form. Eng., 2015

  45. Y. Yu, R. Chen, C.Y. Li et al., A Study on Microstructural Evolution and Detwinning Behavior of Ti-3Al-25V Cold-Rolled Tube During Annealing, Mater. Res. Express., 2020, 7(9), p 096520.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Nos. 51974097, and 52161010), the Program of “One Hundred Talented People” of Guizhou Province (Grant No. 20164014), Guizhou Province Science and Technology Project (Grant Nos. 20191414 and 2022050), Breeding programs of Guizhou University (Grant No. 202021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Xiang.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Xiang, S., Zeng, M. et al. Effects of Recrystallization on the Microstructure and Mechanical Properties of Cold-Rolled Ti-B20 Alloy. J. of Materi Eng and Perform 33, 854–863 (2024). https://doi.org/10.1007/s11665-023-08028-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08028-8

Keywords

Navigation