Skip to main content

Advertisement

Log in

Effect of Electric Pulse-Assisted Laser Shock Peening on the Microstructure and Corrosion Resistance of High-Purity Magnesium

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study adopted a new composite surface treatment method called electric pulse-assisted laser shock peening. High-purity magnesium was pretreated with electric pulse and then strengthened through laser shock peening. The effect of electric pulse-assisted laser shock peening on the microstructure and corrosion resistance of high-purity magnesium was studied. The corrosion resistance of high-purity magnesium was characterized by observation of surface corrosion morphology, energy spectrum component analysis, electrochemical test, and stress corrosion tensile test, and the change in microstructure was studied from the aspects of grain size and dislocation density. The change of microhardness was also studied. Results showed that the corrosion resistance of high-purity magnesium can be effectively improved by this surface treatment method through refining grains, thus increasing the dislocation density and forming a compact, complete, and deep hardened layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X.P. Li, G.Y. Tang, J. Kuang, X.H. Li and J. Zhu, Effect of Current Frequency on the Mechanical Properties, Microstructure and Texture Evolution in AZ31 Magnesium Alloy Strips during Electroplastic Rolling, Mater. Sci. Eng. A., 2014, 612, p 406–413.

    Article  CAS  Google Scholar 

  2. J.J. He, B. Jiang, J.Y. Zhang, Q. Xiang, X.S. Xia and F.S. Pan, Enhancement of Mechanical Properties and Corrosion Resistance of Magnesium Alloy Sheet by Pre-straining and Annealing, Mater. Sci. Eng. A., 2015, 647, p 216–221.

    Article  CAS  Google Scholar 

  3. D.B. Prabhu, P. Gopalakrishnan and K.R. Rav, Morphological Studies on the Development of Chemical Conversion Coating on Surface of Mg-4Zn Alloy and its Corrosion and Bio Mineralisation Behaviour in Simulated Body Fluid, J. Alloys Compd., 2020, 812, p 152146.

    Article  CAS  Google Scholar 

  4. L. González-Rovira, L. González-Souto and P. Astola, Assessment of the Corrosion Resistance of Self-Ordered Anodic Aluminum Oxide (AAO) Obtained in Tartaric-Sulfuric Acid (TSA), Surf. Coat. Tech., 2020, 399, p 126–131.

    Article  Google Scholar 

  5. J. Yang, K. Shi, W. Zhang, Q.S. Chen, Z.E. Ning, C.D. Zhu, J.L. Liao, Y.Y. Yang, N. Liu, W. Zhang and J.J. Yang, A Novel AlCrFeMoTi High-Entropy Alloy Coating with a High Corrosion-Resistance in Lead-Bismuth Eutectic Alloy, Corros. Sci., 2021, 187, p 109524.

    Article  CAS  Google Scholar 

  6. Y.X. Gu, A.B. Ma, J.H. Jiang, H.Y. Li, D. Song, H.R. Wu and Y.C. Yuan, Simultaneously Improving Mechanical Properties and Corrosion Resistance of Pure Ti by Continuous ECAP Plus Short-Duration Annealing, Mater. Charact., 2018, 138, p 38–47.

    Article  CAS  Google Scholar 

  7. M. Mizutani, J. Komotori, K. Katahira, Y. Watanabe and H. Ohmori, Improvement of Corrosion Resistance and Mechanical Properties of the Biomaterial Ti-6Al-4V Alloy by ELID Grinding, Key Eng. Mater., 2004, 257/258, p 473–476.

    Article  Google Scholar 

  8. U. Trdan, T. Sano, D. Klobčar, Y. Sano, J. Grum and R. Sturm, Improvement of Corrosion Resistance of AA2024-T3 using Femtosecond Laser Peening Without Protective and Confining Medium, Corros. Sci., 2018, 143, p 46–55.

    Article  CAS  Google Scholar 

  9. R.J. Sun, Y.G. Guan and Y. Zhu, Development of Laser Surface Technologies for Anti-Corrosion on Magnesium Alloys: A Review, Surf. Rev. Lett., 2016, 4(23), p 1630003.

    Article  Google Scholar 

  10. Y. Shadangi, K. Chattopadhyay, S.B. Rai and V. Singh, Effect of LASER Shock Peening on Microstructure, Mechanical Properties and Corrosion Behavior of Interstitial Free Steel, Surf. Coat. Tech., 2015, 280, p 216–224.

    Article  CAS  Google Scholar 

  11. V.K. Caralapatti and S. Narayanswamy, Effect of High Repetition Laser Shock Peening on Biocompatibility and Corrosion Resistance of Magnesium, Opt. Laser. Technol., 2017, 88, p 75–84.

    Article  CAS  Google Scholar 

  12. J.Z. Lu, H. Qi, K.Y. Luo, M. Luo and X.N. Cheng, Corrosion Behaviour of AISI 304 Stainless Steel Subjected to Massive Laser Shock Peening Impacts with Different Pulse Energies, Corros. Sci., 2014, 80, p 53–59.

    Article  CAS  Google Scholar 

  13. Y.K. Zhang, J. You, J.Z. Lu, C.Y. Cui, Y.F. Jiang and X.D. Ren, Effects of Laser Shock Processing on Stress Corrosion Cracking Susceptibility of AZ31B Magnesium Alloy, Surf. Coat. Tech., 2010, 204, p 3947–3953.

    Article  CAS  Google Scholar 

  14. K. Liu, X.H. Dong, H.Y. Xie, Y.J. Wu and F. Peng, Influence of Pulsed Current on Deformation Mechanism of AZ31B Heets during Tension, J. Alloys Compd., 2016, 676, p 106–112.

    Article  CAS  Google Scholar 

  15. W.K. Bao, X.R. Chu, S.X. Lin and J. Gao, Experimental Investigation on Formability and Microstructure of AZ31B lloy in Electropulse-Assisted Incremental Forming, Mater. Design., 2015, 87, p 632–639.

    Article  CAS  Google Scholar 

  16. H. Zhang, Z.C. Ren, J. Liu, J.Y. Zhao, Z.K. Liu, D. Lin, R.X. Zhang, M.J. Graber, N.K. Thomas, Z.D. Kerek, G.X. Wang, Y.L. Dong and C. Ye, Microstructure Evolution and Electroplasticity in Ti64 Subjected to Lectropulsing-Assisted Laser Shock Peening, J. Alloys Compd., 2019, 802, p 573–582.

    Article  CAS  Google Scholar 

  17. A.I. Babutskii, A. Chrysanthou and J. Ioannou, Effect of Pulsed Electric Current Treatment on Corrosion of Structural Metals, Strength. Mater., 2009, 4(41), p 706–709.

    Google Scholar 

  18. Y.B. Jiang, G.Y. Tang, C.H. Shek and W. Liu, Microstructure and Texture Evolution of the Cold-Rolled AZ91 Magnesium Alloy Strip under Electropulsing Treatment, J. Alloys Compd., 2011, 509, p 4308–4313.

    Article  CAS  Google Scholar 

  19. X.L. Pan, X.D. Wang, Z. Tian, W.F. He, X.S. Shi, P.M. Chen and L.C. Zhou, Effect of Dynamic Recrystallization on Texture Orientation and Grain Refinement of Ti6Al4V Titanium Alloy Subjected to Laser Shock Peening, J. Alloys. Compd., 2021, 850, p 156672.

    Article  CAS  Google Scholar 

  20. K.D. Ralston, D. Fabijanic and N. Birbilis, Effect of Grain Size on Corrosion of High Purity Aluminium, Electrochim. Acta., 2011, 56, p 1729–1736.

    Article  CAS  Google Scholar 

  21. G.R. Argade, S.K. Panigrahi and R.S. Mishra, Effects of Grain Size on the Corrosion Resistance of Wrought Magnesium Alloys Containing Neodymium, Corros. Sci., 2012, 58, p 145–151.

    Article  CAS  Google Scholar 

  22. H. Zhang, P. Xue, L.H. Wu, Q.N. Song, D. Wang, B.L. Xiao and Z.Y. Ma, Effect of Grain Ultra-Refinement on Corrosion Behavior of Ultra-High Strength High Nitrogen Stainless Steel, Corros. Sci., 2020, 174, p 108847.

    Article  CAS  Google Scholar 

  23. J.L. Lv, T.X. Liang, C. Wang and L.M. Dong, Effect of Ultrafine Grain on Tensile Behaviour and Corrosion Resistance of the Duplex Stainless Steel, Mat. Sci. Eng. C-Mater., 2016, 62, p 558–563.

    Article  CAS  Google Scholar 

  24. M. Abeens, R. Muruganandhan and K. Thirumavalavan, Effect of Low Energy Laser Shock Peening on Plastic Deformation Wettability and Corrosion Resistance of Aluminum Alloy 7075 T651, Optik., 2020, 2019, p 165045.

    Google Scholar 

  25. X.D. Chen, Y.S. Li, Y.T. Zhu and B. Yang, Enhanced Irradiation and Corrosion Resistance of 316LN Stainless Steel with High Densities of Dislocations and Twins, J. Nucl. Mater., 2019, 517, p 234–240.

    Article  CAS  Google Scholar 

  26. P. Gay, P.B. Hirsch and A. Kelly, The Estimation of Dislocation Densities in Metals from X-ray Data, Acta. Mater., 1953, 1(3), p 315–319.

    Article  CAS  Google Scholar 

  27. C.G. Dunn and E.F. Kogh, Comparison of Dislocation Densities of Primary and Secondary Recrystallization Grains of Si-Fe, Acta. Mater., 1957, 5(10), p 548–554.

    Article  CAS  Google Scholar 

  28. X.D. Ren, W.F. Zhou, Y.P. Ren, S.D. Xu, F.F. Liu, S.Q. Yuan, N.F. Ren and J.J. Huang, Dislocation Evolution and Properties Enhancement of GH2036 by Laser Shock Processing: Dislocation Dynamics Simulation and Experiment, Mat. Sci. Eng. A-Struct., 2016, 654, p 184–192.

    Article  CAS  Google Scholar 

  29. D.J. Kong, H. Miao and A.P. Hu, Effects of Laser Shock Processing on Corrosion Properties of 304 Stainless Steel, Key Eng. Mater., 2010, 426/427, p 109–113.

    Article  Google Scholar 

  30. C.Z. Qi, X. Chen, X.Z. Li and Y.J. Sun, Effect of Inertia and Crack Propagation on Dynamic Strength of Geologic-Type Materials, Int. J. Impact. Eng., 2019, 133, p 103367.

    Article  Google Scholar 

  31. L. Ren, X.M. Yu, Y. He, K. Wang and H.L. Yao, Numerical Investigation of Lateral Inertia Effect in Dynamic Impact Testing of UHPC using a Split-Hopkinson Pressurebar, Constr. Build. Mater., 2020, 246, p 118483.

    Article  Google Scholar 

  32. R.J. Sun, L.H. Li, W. Guo, P. Peng, T.G. Zhai, Z.G. Che, B. Li, C. Guo and Y. Zhu, Laser Shock Peening Induced Fatigue Crack Retardation in Ti-17 Titanium Alloy, Mat. Sci. Eng., 2018, 737, p 94–104.

    Article  CAS  Google Scholar 

  33. A.S. Al-Ameeri, M.I. Rafiq and O. Tsioulou, Combined Impact of Carbonation and Crack Width on the Chloride Penetration and Corrosion Resistance of Concrete Structures, Cement. Concrete. Comp., 2020, 115, p 103819.

    Article  Google Scholar 

  34. A. Hosoi, T. Nagahama and Y. Ju, Fatigue Crack Healing by a Controlled High Density Electric Current Field, Mat. Sci. Eng. A-Struct., 2012, 533, p 38–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 51675243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixia Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, H., Ma, Y. et al. Effect of Electric Pulse-Assisted Laser Shock Peening on the Microstructure and Corrosion Resistance of High-Purity Magnesium. J. of Materi Eng and Perform 31, 6595–6605 (2022). https://doi.org/10.1007/s11665-022-06712-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06712-9

Keywords

Navigation