Skip to main content
Log in

Experimental, Modeling, and Optimization Investigation on Mechanical Properties and the Crashworthiness of Thin-Walled Frusta of Silica/Epoxy Nano-composites: Fuzzy Neural Network, Particle Swarm Optimization/Multivariate Nonlinear Regression, and Gene Expression Programming

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, an experimental study on the quasi-static collapse of thin-walled frusta of silica/epoxy nano-composites was conducted. The effect of nano-silica content and the particle size hybrid on the energy absorption capability of thin-walled frusta, the impact strength, Young’s modulus, and the yield strength was investigated. For this purpose, three various sizes of the silica particle with the mean diameter of 17, 25, and 65 nm were used. The results showed that by adding the silica nano-particles up to 6 wt.%, the impact strength and Young’s modulus increased, the yield strength remained constant, and the crashworthy capability of structures decreased. Also, two approaches including Fuzzy Neural Network, the hybrid of Particle Swarm Optimization (PSO), and Multivariate Nonlinear Regression (MNLR) were employed to determine the effect of the mentioned parameters. In comparison with the mentioned models and the experimental results, PSO/MNLR approach showed a better prediction for the parameters. Different parameters were optimized by Gene Expression Programming. Some fracture surfaces were studied by scanning the electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.A. Kardomateas and G.J. Simitses, Comparative Studies on the Buckling of Isotropic, Orthotropic, and Sandwich Columns, Mech. Adv. Mater. Struct., 2004, 4(11), p 309–327.

    Article  CAS  Google Scholar 

  2. A. Malekshahi, K.H. Shirazi and M. Shishesaz, Static and Dynamic Axial Crushing of Prismatic Thin-Walled Metal Columns, JCAMECH., 2019, 1(50), p 27–40.

    Google Scholar 

  3. S.A. Meguid, F. Yang and P. Hou, Crush Behaviour of Foam-Filled Thin-Walled Conical Frusta: Analytical, Numerical and Experimental Studies, Acta Mech., 2016, 227, p 3391–3406.

    Article  Google Scholar 

  4. J.V. Mane, S. Chandra, S. Sharma, H. Ali, V.M. Chavan, B.S. Manjunath and R.J. Patel, Mechanical Property Evaluation of Polyurethane Foam under Quasi-static and Dynamic Strain Rates- An Experimental Study, Procedia Eng., 2017, 173, p 726–731.

    Article  CAS  Google Scholar 

  5. M. Mehri, H. Asadi and Q. Wang, Buckling and Vibration Analysis of a Pressurized CNT Reinforced Functionally Graded Truncated Conical Shell Under an Axial Compression Using HDQ Method, Comput. Methods Appl. Mech. Eng., 2016, 303, p 75–100.

    Article  Google Scholar 

  6. M. Kathiresan, K. Manisekar and V. Manikandan, Crashworthiness Analysis of Glass Fibre/Epoxy Laminated Thin Walled Composite Conical Frusta Under Axial Compression, Compos. Struct., 2014, 108, p 584–599.

    Article  Google Scholar 

  7. M. Shariati, H.R. Allahbakhsh, J. Samei and M. Sedighi, Optimization of Foam Filled Spot-Welded Column for the Crashworthiness Design, Mechanika, 2010, 3(83), p 10–16.

    Google Scholar 

  8. A. Dadrasi and M. Shariati, Progressive Failure and Energy Absorption of Aluminum Extrusion Damage, Energy Sci. Technol., 2011, 2(1), p 51–56.

    Google Scholar 

  9. J. Xu, X. Zhao, Y. Yu, T. Xie, G. Yang and J. Xue, Parametric Sensitivity Analysis and Modelling of Mechanical Properties of Normal- and High-Strength Recycled Aggregate Concrete Using Grey Theory, Multiple Nonlinear Regression and Artificial Neural Networks, Constr. Build. Mater., 2019, 211, p 479–491.

    Article  Google Scholar 

  10. W. Yu, M.Q. Li, J. Luo, S. Su and C. Li, Prediction of the Mechanical Properties of the Post-Forged Ti–6Al–4V Alloy Using Fuzzy Neural Network, Mater. Des., 2010, 7(31), p 3282–3288.

    Article  CAS  Google Scholar 

  11. H. Fazilat, M. Ghatarband, S. Mazinani, Z.A. Asadi, M.E. Shiri and M.R. Kalaee, Predicting the Mechanical Properties of Glass Fiber Reinforced Polymers via Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, Comput. Mater. Sci., 2012, 58, p 31–37.

    Article  CAS  Google Scholar 

  12. A. Gholampour, A.H. Gandomi and T. Ozbakkaloglu, New Formulations for Mechanical Properties of Recycled Aggregate Concrete Using Gene Expression Programming, Constr. Build. Mater., 2018, 130, p 122–145.

    Article  Google Scholar 

  13. H. Mashhadban, S.S. Kutanaei and M.A. Sayarinejad, Prediction and Modeling of Mechanical Properties in Fiber Reinforced Self-Compacting Concrete Using Particle Swarm Optimization Algorithm and Artificial Neural Network, Constr. Build. Mater., 2016, 119, p 277–287.

    Article  CAS  Google Scholar 

  14. A. Dadrasi, M. Beynaghi and S. Fooladpanjeh, Crashworthiness of Thin-Walled Square Steel Columns Reinforced Based on Fractal Geometrics, Trans. Indian Inst. Met., 2019, 11, p 215–225.

    Article  CAS  Google Scholar 

  15. E. Kayabasi, S. Ozturk, E. Celik, H. Kurt and E. Arcaklioglu, Prediction of Nano Etching Parameters of Silicon Wafer for a Better Energy Absorption with the Aid of an Artificial Neural Network, Sol. Energy Mater. Sol. Cells, 2018, 188, p 234–240.

    Article  CAS  Google Scholar 

  16. D.C. Jana, P. Barick and B.P. Saha, Correction to: Effect of Sintering Temperature on Density and Mechanical Properties of Solid-State Sintered Silicon Carbide Ceramics and Evaluation of Failure Origin, J. Mater. Eng. Perform., 2018, 27, p 4978.

    Article  CAS  Google Scholar 

  17. A. Dadrasi, S. Fooladpanjeh and A.A. Gharahbagh, Interactions Between HA/GO/Epoxy Resin Nanocomposites: Optimization, Modeling and Mechanical Performance Using Central Composite Design and Genetic Algorithm, J. Braz. Soc. Mech. Sci. Eng., 2019, 41, p 63.

    Article  CAS  Google Scholar 

  18. Y. Cheng, Y. Li, X. Chen, X. Zhou and N. Wang, Compressive Properties and Energy Absorption of Aluminum Foams with a Wide Range of Relative Densities, J. Mater. Eng. Perform., 2018, 27, p 4016–4024.

    Article  CAS  Google Scholar 

  19. E. Noskovicova, D. Lorenc, P. Magdolen, I. Sigmundova, P. Zahradnik and D. Velic, Broadband Two-Photon Absorption Cross Sections of Benzothiazole Derivatives and Benzobisthiazolium Salts, Chem. Phys. Lett., 2018, 700, p 22–26.

    Article  CAS  Google Scholar 

  20. S. Neupane, R. Peale and S. Vasu, Infrared Absorption Cross Sections of Several Organo-Phosphorous Chemical-Weapon simulants, J. Mol. Spectrosc., 2018, 355, p 59–65.

    Article  CAS  Google Scholar 

  21. G.G. Jatana, A.K. Perfetto, S.C. Geckler and W.P. Partridge, Absorption Spectroscopy Based High-Speed Oxygen Concentration Measurements at Elevated Gas Temperatures, Sens. Actuators B Chem., 2019, 293, p 173–182.

    Article  CAS  Google Scholar 

  22. W. Fu, R. Wang, K. Wu, J. Kuang, J. Zhang, G. Liu and J. Sun, The Influences of Multiscale Second-Phase Particles on Strength and Ductility of Cast Mg Alloys, J Mater Sci., 2018, 54, p 2628–2647.

    Article  CAS  Google Scholar 

  23. H. Wang, M. Nakanishi and Y. Kawahito, Effects of Welding Speed on Absorption Rate in Partial and Full Penetration Welding of Stainless Steel with High Brightness and High-Power Laser, J. Mater. Process. Technol., 2017, 249, p 193–201.

    Article  CAS  Google Scholar 

  24. X. Li, G. Jia, F. Qu, H. Wu and J. Chen, Ultrafine Grain Refinement and Superplasticity of Ti-55 Alloy Obtained by Hydrogen Absorption and Desorption, J. Mater. Eng. Perform., 2018, 27, p 3472–3477.

    Article  CAS  Google Scholar 

  25. K. Yang, Y. Chen, L. Zhang, F. Xiong, X. Hu and C. Qiao, Shape and Geometry Design for Self-Locked Energy Absorption Systems, Int. J. Mech. l Sci., 2019, 156, p 312–328.

    Article  Google Scholar 

  26. Y. Liu, T.A. Schaedler and X. Chen, Dynamic Energy Absorption Characteristics of Hollow Microlattice Structures, Mech. Mater., 2014, 77, p 1–13.

    Article  CAS  Google Scholar 

  27. S. Jin, R.J. Patton and B. Guo, Enhancement of Wave Energy Absorption Efficiency via Geometry and Power Take-Off Damping Tuning, Energy, 2019, 169, p 819–832.

    Article  Google Scholar 

  28. D. Sun, Q. Liao, T. Stoyanov, A. Kiselev and A. Loutfi, Bilateral Telerobotic System Using Type-2 Fuzzy Neural Network Based Moving Horizon Estimation Force Observer for Enhancement of Environmental Force Compliance and Human Perception, Automatica, 2019, 106, p 358–373.

    Article  Google Scholar 

  29. J. Chen, C. Li and X. Yang, A Symptotic Stability of Delayed Fractional-Order Fuzzy Neural Networks with Impulse Effects, J. Franklin Inst., 2018, 15(355), p 7595–7608.

    Article  Google Scholar 

  30. C.M. Lin, T.L. Le and T.T. Huynh, Self-Evolving Function-Link Interval Type-2 fuzzy Neural Network for Nonlinear System Identification and Control, Neurocomputing, 2018, 275, p 2239–2250.

    Article  Google Scholar 

  31. E. Zamirpour and M. Mosleh, A biological Brain-Inspired Fuzzy Neural Network: Fuzzy Emotional Neural Network, Biol. Inspired Cognit. Arch., 2018, 26, p 80–90.

    Google Scholar 

  32. A. Dadrasi, Gh.A. Farzi, M. Shariati, S. Fooladpanjeh and V. Parvaneh, Experimental Study and Optimization of Fracture Properties of Epoxy-Based Nano-Composites: Effect of Using Nano-Silica by GEP, RSM DTM and PSO, Eng. Fract. Mech., 2020, 232, p 107047.

    Article  Google Scholar 

  33. Y. Shi, and R. Eberhart, A modified particle swarm optimizer. In Proceeding of the IEEE International Conference of Evolutionary Computation. (1998), p. 69–73

  34. N.K. Jain, U. Nangia and J. Jain, A Review of Particle Swarm Optimization, J. Inst. Eng., 2018, 99, p 407–411.

    Google Scholar 

  35. L.Y. Huang, K.S. Guan, T. Xu, J.M. Zhang and Q.Q. Wang, Investigation of the Mechanical Properties of Steel Using Instrumented Indentation Test with Simulated Annealing Particle Swarm Optimization, Theor. Appl. Fract. Mech., 2019, 102, p 116–121.

    Article  Google Scholar 

  36. S. Fooladpanjeh, A. Dadrasi, A.A. Gharahbagh and V. Parvaneh, Fuzzy Neural Network and Coupled Gene Expression Programming/Multivariate Non-Linear Regression Approach on Mechanical, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2021, 23, p 19771.

    Google Scholar 

  37. D. Liu, L. Song, H. Song, J. Chen, Q. Tian, L. Chen, L. Sun, A. Lu, C. Huang and G. Sun, Correlation Between Mechanical Properties and Microscopic Structures of an Optimized Silica Fraction in Silicone Rubber, Compos. Sci. Technol., 2018, 165, p 373–379.

    Article  CAS  Google Scholar 

  38. S. Kirtania and D. Chakraborty, Determination of Thermoelastic Properties of Carbon Nanotube/Epoxy Composites Using Finite Element Method, J. Mater. Eng. Perform., 2018, 27, p 3783–3788.

    Article  CAS  Google Scholar 

  39. Q. Tian, Y. Tang, T. Ding, X. Li and Z. Zhang, Effect of Nano-Silica Surface-Capped by bis [3-(triethoxysilyl)propyl] Tetrasulfide On The Mechanical Properties of Styrene-Butadiene Rubber/Butadiene Rubber Nanocomposites, Compos. Commun., 2018, 10, p 190–193.

    Article  Google Scholar 

  40. M. Han, Y. Zhou and J. Zhu, Improvement on Flowability and Fluidization of Group C Particles After Nanoparticle Modification, Powder Technol., 2019, 365, p 208–214.

    Article  CAS  Google Scholar 

  41. A. Mahdieh, A.R. Mahdavian and H.S. Mobarakeh, Chemical Modification of Magnetite Nanoparticles and Preparation of Acrylic-Base Magnetic Nanocomposite Particles via Miniemulsion Polymerization, J. Magn. Magn. Mater., 2017, 426, p 230–238.

    Article  CAS  Google Scholar 

  42. A. Pattnayak, N. Madhu, A.S. Panda, M.K. Sahoo and K. Mohanta, A Comparative Study on Mechanical Properties of Al-SiO2 Composites Fabricated Using Rice Husk Silica in Crystalline and Amorphous form as Reinforcement, Mater. Today Proc., 2018, 2(5), p 8184–8192.

    Article  CAS  Google Scholar 

  43. R.K. Nayak, A. Dash and B.C. Ray, Effect of Epoxy Modifiers (Al2O3/SiO2/TiO2) on Mechanical Performance of Epoxy/Glass Fiber Hybrid Composites, Procedia Mater. Sci., 2014, 6, p 1359–1364.

    Article  CAS  Google Scholar 

  44. Y.Y. Song, H.L. Li, H.Y. Zhao, D. Liu, X.G. Song and J.C. Feng, Interfacial Microstructure and Mechanical Property of Brazed Copper/SiO2 Ceramic Joint, Vacuum, 2017, 141, p 116–123.

    Article  CAS  Google Scholar 

  45. S.K. Singh, M.J. Akhtar and K.K. Kar, Impact of Al2O3, TiO2, ZnO and BaTiO3 on the Microwave Absorption Properties of Exfoliated Graphite/Epoxy Composites at X-Band Frequencies, Compos. B, 2019, 167, p 135–146.

    Article  CAS  Google Scholar 

  46. A. Dadrasi, A.R. Albooyeh, S. Fooladpanjeh, M.D. Shad and M. Beynaghi, RSM and ANN Modeling of the Energy Absorption Behavior of Steel Thin-Walled Columns: A Multi-Objective Optimization Using the Genetic Algorithm, J. Braz. Soc. Mech. Sci. Eng., 2020, 42, p 1–14.

    Article  Google Scholar 

  47. Y. Wan, C. Diao, B. Yang, L. Zhang and S. Chen, GF/epoxy Laminates Embedded with Wire Nets: A Way to Improve the Low-Velocity Impact Resistance and Energy Absorption Ability, Compos. Struct., 2018, 202, p 818–835.

    Article  Google Scholar 

  48. M. Mahbob and M. Asgari, Energy Absorption Analysis of a Novel Foam-Filled Corrugated Composite Tube Under Axial and Oblique Loadings, Thin-Walled Struct., 2018, 129, p 58–73.

    Article  Google Scholar 

  49. A. Dadrasi, A.A. Gharahbagh and S. Fooladpanjeh, Prediction and Optimization of Fracture Properties of Nano-Silica/Epoxy Composites Using Response Surface Method, Am. J. Oil Chem. Technol., 2014, 2, p 45–47.

    Google Scholar 

  50. Y. Yang, K. Ahmed, R. Zhang, R. Liu, G. Fortin, H. Hamada and Y. Ma, A Study on the Energy Absorption Capacity of Braided Rod Composites, Compos. Struct., 2018, 206, p 933–940.

    Article  Google Scholar 

  51. A.J. Kinloch and A.C. Taylor, The Toughening of Cyanate-Ester Polymers-Part I-Physical Modification Using Particles, Fibers and Wovenmats, J. Mater. Sci., 2002, 37, p 433–460.

    Article  CAS  Google Scholar 

  52. A. Dadrasi, A.A. Gharahbagh and S. Fooladpnajeh, Optimization of Mechanical Properties of Rubber/Silica/Epoxy Nanocomposites by RSM, Int. J. Innov. Res. Sci. Eng. Tecnol., 2015, 5, p 10243.

    Google Scholar 

  53. K.T. Faber and A.G. Evans, Crack Deflection Processes—I, Theory Acta Metall., 1983, 4(31), p 565–576.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dadrasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadrasi, A., Shariati, M., Farzi, G.A. et al. Experimental, Modeling, and Optimization Investigation on Mechanical Properties and the Crashworthiness of Thin-Walled Frusta of Silica/Epoxy Nano-composites: Fuzzy Neural Network, Particle Swarm Optimization/Multivariate Nonlinear Regression, and Gene Expression Programming. J. of Materi Eng and Perform 31, 3030–3040 (2022). https://doi.org/10.1007/s11665-021-06391-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06391-y

Keywords

Navigation