Skip to main content
Log in

Microbiologically Influenced Corrosion of AA 6061 with Bacillus Species in an Environment Containing an Organic Nitrogen Source

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 29 November 2021

This article has been updated

Abstract

Microbiologically influenced corrosion (MIC) is closely associated with the metabolism of microorganisms, and organic nitrogen sources (ONS) are some of the key nutrients for bacterial metabolism. However, the influence of the amount of ONS on MIC and the corresponding mechanisms involved are still elusive. In this study, the MIC behavior of aluminum alloy 6061 in aqueous media with different amounts of ONS was investigated. Microbial activity and metabolism, which influenced the environment, were analyzed by optical density, pH, and NH4+ ion concentration. Pitting corrosion was analyzed by scanning electronic microscopy and electrochemical impedance spectroscopy. Bacillus aerius inhibited the development of pitting corrosion in aluminum alloy 6061 because of the NH4+ and NH3·H2O in their metabolites, which provided a pH buffering effect that suppressed the autocatalysis alkalinization around intermetallic inclusions. The inhibitory effect was positively correlated with microbial activity. Therefore, a higher concentration of ONS contributed to the inhibition of pitting corrosion because ONS was beneficial to the propagation and proliferation of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. M. Zhu, B.Z. Zhao, Y.F. Yuan, S.Y. Guo and J. Pan, Effect of Solution Temperature on the Corrosion Behavior of 6061–T6 Aluminum Alloy in NaCl Solution, J. Mater. Eng. and Perform., 2020, 29(7), p 4725–4732.

    Article  CAS  Google Scholar 

  2. J. Wang, H. Yang, M. Du, J. Hou, W. Peng and C. Lin, Corrosion Mechanism of 5083 Aluminum Alloy in Seawater Containing Phosphate, J. Ocean Univ. China, 2021, 20(2), p 372–382.

    Article  CAS  Google Scholar 

  3. M.X. Milagre, U. Donatus, R.M.P. Silva, A.M. Betancor-Abreu, O.M.P. Ramirez, C.S.C. Machado, J.V.S. Araujo, R.M. Souto and I. Costa, Galvanic Coupling Effects on the Corrosion Behavior of the 6061 Aluminum Alloy Used in Research Nuclear Reactors, J. Nucl. Mater., 2020, 541, p 152440.

    Article  CAS  Google Scholar 

  4. N. Li, C. Dong, C. Man and J. Yao, In Situ Electrochemical Atomic Force Microscopy and Auger Electro Spectroscopy Study on the Passive Film Structure of 2024–T3 Aluminum Alloy Combined with a Density Functional Theory Calculation, Adv. Eng. Mater., 2019, 21(12), p 1900386.

    Article  CAS  Google Scholar 

  5. Y. Ji, C. Dong, D. Kong and X. Li, Design Materials Based on Simulation Results of Silicon Induced Segregation at AlSi10Mg Interface Fabricated by Selective Laser Melting, J. Mater. Sci. Technol., 2020, 46, p 145–155.

    Article  Google Scholar 

  6. S. Zhang, T. Zhang, Y. He, D. Liu, J. Wang, X. Du and B. Ma, Long-Term Atmospheric Corrosion of Aluminum Alloy 2024–T4 in Coastal Environment: Surface and Sectional Corrosion Behavior, J. Alloy. and Compd., 2019, 789, p 460–471.

    Article  CAS  Google Scholar 

  7. C. Alvarado G., M. Sancy, J.M. Blamey, C. Galarce, A. Monsalve, F. Pineda, N. Vejar, and M. Páez, Electrochemical Characterization of Aluminum Alloy AA2024 − T3 Influenced by Bacteria from Antarctica, Electrochim. Acta, 2017, 247, p 71–79.

    Article  Google Scholar 

  8. K. Nishchitha, M.K. Deepa, B.G. Prakashaiah, J.N. Balaraju and B.E. Amitha rani, Effect of Surface Treatment on Bio-Corrosion in Aluminum Alloy 2024–T3, J. Mater. Eng. Perform., 2018, 27(11), p 5778–5787.

    Article  CAS  Google Scholar 

  9. H. Liu, B. Zheng, D. Xu, C. Fu and Y. Luo, Effect of Sulfate-Reducing Bacteria and Iron-Oxidizing Bacteria on the Rate of Corrosion of an Aluminum Alloy in a Central Air-Conditioning Cooling Water System, Ind. Eng. Chem. Res., 2014, 53(19), p 7840–7846.

    Article  CAS  Google Scholar 

  10. X. Li, H. Wang, C. Hu, M. Yang, H. Hu and J. Niu, Characteristics of Biofilms and Iron Corrosion Scales with Ground and Surface Waters in Drinking Water Distribution Systems, Corros. Sci., 2015, 90, p 331–339.

    Article  CAS  Google Scholar 

  11. V. Pozzobon, W. Levasseur, C. Guerin and P. Perré, Nitrate and Nitrite as Mixed Source of Nitrogen for Chlorella Vulgaris: Fast Nitrogen Quantification Using Spectrophotometer and Machine Learning, J. Appl. Phycol., 2021 https://doi.org/10.1007/s10811-021-02422-2

    Article  Google Scholar 

  12. Y. Hu, K. Xiao, D. Zhang, P. Yi, R. Xiong, C. Dong, J. Wu and X. Li, Corrosion Acceleration of Printed Circuit Boards With an Immersion Silver Layer Exposed to Bacillus Cereus in an Aerobic Medium, Front. Microbiol., 2019, 10, p 1493.

    Article  Google Scholar 

  13. F. Guan, X. Zhai, J. Duan, J. Zhang, K. Li and B. Hou, Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of 5052 Aluminum Alloy, Surf. Coat. Tech., 2017, 316, p 171–179.

    Article  CAS  Google Scholar 

  14. J.S. de Andrade, M.R.S. Vieira, S.H. Oliveira, S.K. de Melo Santos and S.L. Urtiga Filho, Study of Microbiologically Induced Corrosion of 5052 Aluminum Alloy by Sulfate-Reducing Bacteria in Seawater, Mater. Chem. Phys., 2020, 241, p 122296.

    Article  Google Scholar 

  15. J. Wang, F. Xiong, H. Liu, T. Zhang, Y. Li, C. Li, W. Xia, H. Wang and H. Liu, Study of the Corrosion Behavior of Aspergillus Niger on 7075–T6 Aluminum Alloy in a High Salinity Environment, Bioelectrochemistry, 2019, 129, p 10–17.

    Article  CAS  Google Scholar 

  16. M. Sancy, A. Abarzúa, M.I. Azócar, J.M. Blamey, F. Boehmwald, G. Gómez, N. Vejar and M. Páez, Biofilm Formation on Aluminum Alloy 2024: A Laboratory Study, J. of Electroanal. Chem., 2015, 737, p 212–217.

    Article  CAS  Google Scholar 

  17. X. Dai, H. Wang, L.-K. Ju, G. Cheng, H. Cong and B.Z. Newby, Corrosion of Aluminum Alloy 2024 Caused by Aspergillus Niger, Int. Biodeter. Biodegr., 2016, 115, p 1–10.

    Article  CAS  Google Scholar 

  18. E. Juzeliūnas, R. Ramanauskas, A. Lugauskas, M. Samulevičienė and K. Leinartas, Microbially Influenced Corrosion Acceleration and Inhibition. EIS Study of Zn and Al Subjected for Two Years to Influence of Penicillium Frequentans, Aspergillus Niger and Bacillus Mycoides, Electrochem. Commun., 2005, 7(3), p 305–311.

    Article  Google Scholar 

  19. T. Tran Thi Thuy, K. Kannoorpatti, A. Padovan, S. Thennadil, and N. Nguyen Dang, Effect of Nickel on the Adhesion and Corrosion Ability of Pseudomonas Aeruginosa on Stainless Steel, J. Mater. Eng. Perform., 2019, 28(9), p 5797–5805.

    Article  Google Scholar 

  20. R. Xiong, K. Xiao, P. Yi, Y. Hu, C. Dong, J. Wu and X. Li, The Influence of Bacillus Subtilis on Tin-Coated Copper in an Aqueous Environment, RSC Adv., 2018, 8(9), p 4671–4679.

    Article  CAS  Google Scholar 

  21. Q. Liu, Z. Li, Z.Y. Liu, X.G. Li and S.Q. Wang, Effects of H2S/HS− on Stress Corrosion Cracking Behavior of X100 Pipeline Steel Under Simulated Sulfate-Reducing Bacteria Metabolite Conditions, J. Mater. Eng. Perform., 2017, 26(6), p 2763–2775.

    Article  CAS  Google Scholar 

  22. A. Rajasekar and Y.-P. Ting, Role of Inorganic and Organic Medium in the Corrosion Behavior of Bacillus Megaterium and Pseudomonas Sp in Stainless Steel SS 304, Ind. Eng. Chem. Res., 2011, 50(22), p 12534–12541.

    Article  CAS  Google Scholar 

  23. M.A. Javed, P.R. Stoddart, E.A. Palombo, S.L. McArthur and S.A. Wade, Inhibition or Acceleration: Bacterial Test Media Can Determine the Course of Microbiologically Influenced Corrosion, Corros. Sci., 2014, 86, p 149–158.

    Article  CAS  Google Scholar 

  24. Z.Y. Cui, X.G. Li, C. Man, K. Xiao, C.F. Dong, X. Wang and Z.Y. Liu, Corrosion Behavior of Field-Exposed 7A04 Aluminum Alloy in the Xisha Tropical Marine Atmosphere, J. Mater. Eng. Perform., 2015, 24(8), p 2885–2897.

    Article  CAS  Google Scholar 

  25. F. Guan, J. Duan, X. Zhai, N. Wang, J. Zhang, D. Lu and B. Hou, Interaction between Sulfate-Reducing Bacteria and Aluminum Alloys—Corrosion Mechanisms of 5052 and Al-Zn-In-Cd Aluminum Alloys, J. Mater. Sci. Technol., 2020, 36, p 55–64.

    Article  Google Scholar 

  26. L. Wen, Y.M. Wang, Y. Liu, Y. Zhou, L.X. Guo, J.H. Ouyang and D.C. Jia, EIS Study of a Self-Repairing Microarc Oxidation Coating, Corros. Sci., 2011, 53(2), p 618–623.

    Article  CAS  Google Scholar 

  27. B. Wang, L. Zhang, H. Jiang, X. Li and X. Mu, Atmospheric Corrosion Comparison of Antirust Aluminum Exposed to Industrial and Coastal Atmospheres, Mater. Corros., 2018, 69(11), p 1516–1525.

    Article  CAS  Google Scholar 

  28. Q. Zhao, C. Guo, K. Niu, J. Zhao, Y. Huang and X. Li, Long-Term Corrosion Behavior of the 7A85 Aluminum Alloy in an Industrial-Marine Atmospheric Environment, J. Mater. Res. Technol., 2021, 12, p 1350–1359.

    Article  CAS  Google Scholar 

  29. D. Chaofang, X. Kui, X. Lin, S. Hai, A. Yinghui and L. Xiaogang, Characterization of 7A04 Aluminum Alloy Corrosion under Atmosphere with Chloride Ions Using Electrochemical Techniques, Rare. Metal. Mat. Eng., 2011, 40(S2), p 275–179.

    Google Scholar 

  30. K. Ding, S. Liu, W. Cheng, J. Du, L. Fan, J. Hou and L. Xu, Corrosion Behavior of T2 and B30 Cu-Ni Alloy at Different Seawater Depths of the South China Sea, J. Mater. Eng Perform., 2021 https://doi.org/10.1007/s11665-021-05790-5

    Article  Google Scholar 

  31. K. Xiao, X. Gao, L. Yan, P. Yi, D. Zhang, C. Dong, J. Wu and X. Li, Atmospheric Corrosion Factors of Printed Circuit Boards in a Dry-Heat Desert Environment: Salty Dust and Diurnal Temperature Difference, Chem. Eng. J., 2018, 336, p 92–101.

    Article  CAS  Google Scholar 

  32. R. Zuo, E. Kus, F. Mansfeld and T.K. Wood, The importance of live biofilms in corrosion protection, Corros. Sci., 2005, 47(2), p 279–287.

    Article  CAS  Google Scholar 

  33. C. Blanc and G. Mankowski, Susceptibility to Pitting Corrosion of 6056 Aluminium Alloy, Corros. Sci., 1997, 39(5), p 949–959.

    Article  Google Scholar 

  34. J.H.W. de Wit, New Knowledge on Localized Corrosion Obtained from Local Measuring Techniques, Electrochim. Acta, 2001, 46(24), p 3641–3650.

    Article  Google Scholar 

  35. D. Zander, C. Schnatterer, C. Altenbach and V. Chaineux, Microstructural Impact on Intergranular Corrosion and the Mechanical Properties of Industrial Drawn 6056 Aluminum Wires, Mat. Design, 2015, 83, p 49–59.

    Article  CAS  Google Scholar 

  36. W. Tian, S. Li, X. Chen, J. Liu and M. Yu, Intergranular Corrosion of Spark Plasma Sintering Assembled Bimodal Grain Sized AA7075 Aluminum Alloys, Corros. Sci., 2016, 107, p 211–224.

    Article  CAS  Google Scholar 

  37. J. Ryl, J. Wysocka, M. Jarzynka, A. Zielinski, J. Orlikowski and K. Darowicki, Effect of Native Air-Formed Oxidation on the Corrosion Behavior of AA 7075 Aluminum Alloys, Corros. Sci., 2014, 87, p 150–155.

    Article  CAS  Google Scholar 

  38. N. Birbilis and R.G. Buchheit, Investigation and Discussion of Characteristics for Intermetallic Phases Common to Aluminum Alloys as a Function of Solution PH, J. Electrochem. Soc., 2008, 155(3), p C117.

    Article  CAS  Google Scholar 

  39. J.O. Park, C.-H. Paik and R.C. Alkire, Scanning Microsensors for Measurement of Local PH Distributions at the Microscale, J. Electrochem. Soc., 1996, 143(8), p L174.

    Article  CAS  Google Scholar 

  40. M. Büchler, T. Watari and W.H. Smyrl, Investigation of the Initiation of Localized Corrosion on Aluminum Alloys by Using Fluorescence Microscopy, Corros. Sci., 2000, 42(9), p 1661–1668.

    Article  Google Scholar 

  41. A.F. Forte Giacobone, S.A. Rodriguez, A.L. Burkart and R.A. Pizarro, Microbiological Induced Corrosion of AA 6061 Nuclear Alloy in Highly Diluted Media by Bacillus Cereus RE 10, Int. Biodeter. Biodegr., 2011, 65(8), p 1161–1168.

    Article  CAS  Google Scholar 

  42. Z. Li, H. Wan, D. Song, X. Liu, Z. Li and C. Du, Corrosion Behavior of X80 Pipeline Steel in the Presence of Brevibacterium Halotolerans in Beijing Soil, Bioelectrochemistry, 2019, 126, p 121–129.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51971032 and 51771027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: In the originally published article, Figure 5 showed a copy of Figure 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Xiao, K., Yao, Q. et al. Microbiologically Influenced Corrosion of AA 6061 with Bacillus Species in an Environment Containing an Organic Nitrogen Source. J. of Materi Eng and Perform 31, 1870–1880 (2022). https://doi.org/10.1007/s11665-021-06379-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06379-8

Keywords

Navigation