Skip to main content

Advertisement

Log in

Corrosion Behavior of T2 and B30 Cu-Ni Alloy at Different Seawater Depths of the South China Sea

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Through marine natural environment tests, the corrosion behavior of T2 and B30 Cu-Ni alloy at different seawater depths of the South China Sea was studied. The corrosion morphology and corrosion product properties were investigated using different techniques, including 3D optical microscope, scanning electron microscope (SEM), x-ray diffraction analyzer (XRD) and electrochemical impedance spectroscopy (EIS). Based on the environmental factor monitoring data and corrosion rate data, environmental factor influence mechanism on corrosion behavior was discussed The results indicated that the corrosion rate of T2 decreased with seawater depths increasing, while it was opposite for that of B30 Cu-Ni alloy. The evolution law of the corrosion rates of T2 at different seawater depths was mainly controlled by changes in seawater temperature and dissolved oxygen concentration. The effect of hydrostatic pressure was limited on T2 corrosion rate, but high hydrostatic pressure could promote Cl penetrating into the corrosion product film, forming a uniform corrosion morphology for T2. For B30 Cu-Ni alloy, it was simultaneously affected by dissolved oxygen concentration and hydrostatic pressure, and the corrosion product film was rich in Ni and Fe elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Drach, I. Tsukrov, J. DeCew, J. Aufrecht, A. Grohbauer and U. Hofmann, Field Studies of Corrosion Behaviour of Copper Alloys in Natural Seawater, Corros. Sci., 2013, 76, p 453–464.

    Article  CAS  Google Scholar 

  2. N. Aelenei, M. Lungu, D. Mareci and N. Cimpoesu, HSLA Steel and Cast Iron Corrosion in Natural Seawater, Environ. Eng. Manag. J., 2011, 10, p 1951–1958.

    Article  CAS  Google Scholar 

  3. Z. Cui, X. Li, H. Zhang, K. Xiao, C. Dong, Z. Liu and L. Wang, Atmospheric Corrosion Behavior of 2A12 Aluminum Alloy in a Tropical Marine Environment, Adv. Mater. Sci. Eng., 2015, 2015, p 1–17.

    Article  Google Scholar 

  4. M. Schumacher, Seawater Corrosion Handbook, Noyes Data Corp, Park Ridge, 1979.

    Google Scholar 

  5. B.A. Warren, The Deep Water of the Central Indian Basin, J. Mar. Res., 1982, 40, p 823–859.

    Google Scholar 

  6. R. Venkatesan, M.A. Venkatasamy, T.A. Bhaskaran, E.S. Dwarakadasa and M. Ravindran, Corrosion of Ferrous Alloys in Deep Sea Environments, Br. Corros. J., 2002, 37, p 257–266.

    Article  CAS  Google Scholar 

  7. K. Ding, W. Guo, R. Qiu, J. Hou, L. Fan and L. Xu, Corrosion behavior of Q235 Steel Exposed in Deepwater of South China Sea, J. Mater. Eng. Perform., 2018, 27, p 4489–4496.

    Article  CAS  Google Scholar 

  8. L. Lin, S. Liu, Z. Liu and J. Xu, Surface and Interface Characteristics of Cu-Ni Alloy Corrosion in Seawater, Corros. Sci. Prot. Technol., 1999, 11, p 37–43.

    CAS  Google Scholar 

  9. Y. Yang, T. Zhang, Y. Shao, G. Meng and F. Wang, Effect of Hydrostatic Pressure on the Corrosion Behaviour of Ni-Cr-Mo-V High Strength Steel, Corros. Sci., 2010, 52, p 2697–2706.

    Article  CAS  Google Scholar 

  10. A.H. Tuthill, Guidelines for the Use of Copper Alloys in Seawater, Mater. Perform., 1987, 26, p 12–22.

    CAS  Google Scholar 

  11. Z. Cui, K. Xiao, C. Dong, Y. Ding, T. Wang and X. Li, Corrosion Behavior of Copper and Brass in Serious Xisha Marine Atmosphere, Trans. Nonferr. Metal. Soc., 2013, 23, p 742–749.

    Article  CAS  Google Scholar 

  12. X. Liao, F. Cao, L. Zheng, W. Liu, A. Chen, J. Zhang and C. Cao, Corrosion Behaviour of Copper under Chloride-Containing Thin Electrolyte Layer, Corros. Sci., 2011, 53, p 3289–3298.

    Article  CAS  Google Scholar 

  13. R.F. North and M.J. Pryor, The Nature of Protective Film Formed on a Copper Iron Alloy, Corros. Sci., 1969, 9, p 509–516.

    Article  CAS  Google Scholar 

  14. D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao and X. Li, Mechanical Properties and Corrosion Behavior of Selective Laser Melted 316L Stainless Steel after Different Heat Treatment Processes, J. Mater. Sci. Technol., 2019, 35, p 1499–1507.

    Article  Google Scholar 

  15. I.M. Klotz, Introduction to Chemical Thermodynamics, W. A. Benjamin, New York, 1964.

    Google Scholar 

  16. R. Hu, X. Zhao, Y. Weng and C. Lin, Effect of Dissolved Oxygen on the Corrosion Behavior of Coalesced Copper and Stainless Steel-206 in Acetic Solutions, Electrochem., 2002, 8, p 409–414.

    CAS  Google Scholar 

  17. R. Davar, The Effects of Temperature, Dissolved Oxygen and the Velocity of Seawater, on the Corrosion Behavior of Condenser Alloys, Anti-Corros. Method. M., 2011, 58, p 90–94.

    Article  Google Scholar 

  18. B. Liu, Y. Cong, T. Zhang, Y. Shao, G. Meng and F. Wang, Influence of Deep-Sea Environment on Corrosion Behavior of Pure Nickel, Corros. Sci. Prot. Technol., 2009, 21, p 5–10.

    Google Scholar 

  19. A.M. Beccaria, G. Poggi and G. Castello, Influence of Passive Film Composition and Sea Water Pressure on Resistance to Localised Corrosion of Some Stainless Steels in Sea Water, Br. Corros. J., 1995, 30, p 283–287.

    Article  CAS  Google Scholar 

  20. E.D. Mor and A.M. Beccaria, Effects of Hydrostatic Pressure on the Corrosion of Copper in Sea Water, Br. Corros. J., 2013, 13, p 142–146.

    Article  Google Scholar 

  21. L. Lin, S. Liu and X. Zhu, Seawater-Corrosion-Induced Intergranular Precipitation in Cu-Ni Alloy, J. Chin. Soc. Corros. Prot., 1997, 17, p 1–6.

    CAS  Google Scholar 

  22. D. Kong, C. Dong, X. Ni, L. Zhang, H. Luo, R. Li, L. Wang, C. Man and X. Li, The Passivity of Selective Laser Melted 316L Stainless Steel, Appl. Surf. Sci., 2020, 504, p 144495.

    Article  CAS  Google Scholar 

  23. T. Liu, H. Chen, W. Zhang and W. Lou, Accelerated Corrosion Behavior of B10 Cu-Ni Alloy in Seawater, J. Mater. Eng., 2017, 45, p 31–37.

    Google Scholar 

  24. H.V.M. Lopez, T. Sakurai, K. Hirano and N. Sano, A Study of Phase Decomposition in Cu-Ni-Fe Alloys, Acta Metal. Mater., 1993, 41, p 265–271.

    Article  CAS  Google Scholar 

  25. L.H. Bennett and L.J. Swartzendruber, On the Interpretation of Mössbauer Effect Spectra as Related to the Constitution of Cu-Ni-Fe Alloys, Acta Metall., 1970, 18, p 485–498.

    Article  CAS  Google Scholar 

  26. A.M. Beccaria and J. Crousier, Influence of Iron Addition on Corrosion Layer Built up on 70Cu-30Ni Alloy in Sea Water, Br. Corros. J., 1991, 26, p 215–219.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was finically supported by the National Natural Science Foundation of China (No. 51931008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhua Cheng or Likun Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, K., Liu, S., Cheng, W. et al. Corrosion Behavior of T2 and B30 Cu-Ni Alloy at Different Seawater Depths of the South China Sea. J. of Materi Eng and Perform 30, 6027–6038 (2021). https://doi.org/10.1007/s11665-021-05790-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05790-5

Keywords

Navigation