Skip to main content

Advertisement

Log in

Effects of Rolling Deformation on Microstructure, Tensile Properties and Corrosion Behaviors of High Mg Alloyed of Al-Mg Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructure evolutions, mechanical properties, intergranular corrosion (IGC), stress corrosion cracking (SCC) and electrochemical corrosion (EC) behaviors of high-strength Al-9.2Mg-0.8Mn-0.2Zr-0.15Ti alloy are carefully investigated by using optical microscope, transmission electron microscopy, scanning electron microscopy and x-ray diffraction (XRD). The as-studied alloys exhibit typical heavily deformed microstructures, with a high density of dislocation tangles, the dense dislocation walls and a mass of fine and dispersed strain-induced precipitates in the severely deformed grains. The ultimate tensile strength, yield strength and elongation of the hot rolled alloy are 625 ± 10  465 ± 2 MPa and 13 ± 1.5%, respectively; the counterparts of the cold rolled alloy are 697 ± 4, 599 ± 2 MPa and 7.5 ± 1%, respectively. The high strength can be mainly owing to dislocation strengthening. The hot rolled alloy shows higher IGC, SCC and EC resistance than the cold rolled alloy. The segregation of Mg atoms at grain boundaries would lead to IGC and the microstructure in ND-RD direction is more vulnerable to the IGC attack. In the process of slow strain rate tensile testing, localized pitting corrosion would be occurred first in 3.5%NaCl aqueous solution. The residual second phases would destroy oxide films during the EC process and accelerate the surrounding matrix corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. G.S. Yi, K.C. Littrell, J.D. Poplawsky, D.A. Cullen, E. Sundberg and M.L. Free, Characterization of the Effects of Different Tempers and Aging Temperatures on the Precipitation Behavior of Al-Mg (5.25 at.%)-Mn Alloys, Mater. Des., 2017, 118, p 22–35.

    Article  CAS  Google Scholar 

  2. Y.L. Liu, L. Luo, C.F. Han, L.Y. Ou, J.J. Wang and C.Z. Liu, Effect of Fe, Si and Cooling Rate on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-08Mn Alloy, J. Mater. Sci. Technol., 2016, 32, p 305–312.

    Article  CAS  Google Scholar 

  3. M.M. Sharma, J.D. Tomedi and T.J. Weigley, Slow Strain Rate Testing and Stress Corrosion Cracking of Ultra-Fine Grained and Conventional Al-Mg Alloy, Mater. Sci. Eng. A, 2014, 619, p 35–46.

    Article  CAS  Google Scholar 

  4. L. Zhao, H.G. Yan, J.H. Chen, W.J. Xia, B. Su, M. Song, Z.Z. Li, X.Y. Li and Y. Liao, High Ductility and Strong Work-Hardening Behavior of Zn Modified as-hot-Rolled Al-Mg Sheets, J. Alloys Compd, 2021, 854, p 157079.

    Article  CAS  Google Scholar 

  5. Y. Liu, M.P. Liu, X.F. Chen, Y. Cao, H.J. Roven, M. Murashkin, R.Z. Valiev and H. Zhou, Effect of Mg on Microstructure and Mechanical Properties of Al-Mg Alloys Produced by High Pressure Torsion, Scr. Mater., 2019, 159, p 137–141.

    Article  CAS  Google Scholar 

  6. D.H. Jang, Y.B. Park and W.J. Kim, Significant Strengthening in Superlight Al-Mg Alloy with an Exceptionally Large Amount of Mg (13 wt%) After Cold Rolling, Mater. Sci. Eng. A, 2019, 744, p 36–44.

    Article  CAS  Google Scholar 

  7. W.B. Gao, D.P. Wang, M. Seifi and J.J. Lewandowski, Anisotropy of Corrosion and Environmental Cracking in AA5083-H128 Al-Mg Alloy, Mater. Sci. Eng. A, 2018, 730, p 367–379.

    Article  CAS  Google Scholar 

  8. S. Jain, J.L. Hudson and J.R. Scully, Effects of Constituent Particles and Sensitization on Surface Spreading of Intergranular Corrosion on a Sensitized AA5083 Alloy, Electrochim. Acta, 2013, 108, p 253–264.

    Article  CAS  Google Scholar 

  9. Z.Q. Tang, F. Jiang, M.J. Long, J.Y. Jiang, H.F. Liu and M.M. Tong, Effect of Annealing Temperature on Microstructure, Mechanical Properties and Corrosion Behavior of Al-Mg-Mn-Sc-Zr Alloy, Appl. Surf. Sci., 2020, 514, p 146081.

    Article  CAS  Google Scholar 

  10. M. Popović and E. Romhanji, Stress Corrosion Cracking Susceptibility of Al-Mg Alloy Sheet with High Mg Content, J. Mater. Process. Technol., 2002, 125–126, p 275–280.

    Article  Google Scholar 

  11. J.L. Searles, P.I. Gouma and R.G. Buchheit, Stress Corrosion Cracking of Sensitized AA5083 (Al-4.5Mg-1.0Mn), Metall. Mater. Trans. A, 2001, 31, p 2859–2867.

    Article  Google Scholar 

  12. J.R. Pickens, J.R. Gordon and J.A.S. Green, The Effect of Loading Mode on the Stress-Corrosion Cracking of Aluminum Alloy 5083, Metall. Trans. A, 1983, 14, p 925–930.

    Article  CAS  Google Scholar 

  13. H. Yukawa, Y. Murata, M. Morinaga, Y. Takahashi and H. Yoshida, Heterogeneous Distributions of Magnesium Atoms Near the Precipitate in Al-Mg Based Alloys, Acta Metall., 1995, 43, p 681–688.

    Article  CAS  Google Scholar 

  14. D.R. Baer, C.F. Windisch Jr., M.H. Engelhard, M.J. Danielson, R.H. Jones and J.S. Vetrano, Influence of Mg on the Corrosion of Al, J. Vac. Sci. Technol. A, 2000, 18, p 131–136.

    Article  CAS  Google Scholar 

  15. ASTM International, ASTM G67-04, Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss After Exposure to Nitric acid (NAMLT Test), ASTM International, West Conshohocken, PA, 2004

  16. B. Li, Q.L. Pan, Z.Y. Zhang and C. Li, Research on Intercrystalline Corrosion, Exfoliation Corrosion, and Stress Corrosion Cracking of Al-Zn-Mg-Sc-Zr Alloy, Mater. Corros., 2013, 64, p 592–598.

    Article  CAS  Google Scholar 

  17. X.Y. Li, W.J. Xia, H.G. Yan, H.J. Chen, B. Su, M. Song, Z.Z. Li and Y.L. Li, Dynamic Recrystallization Behaviors of High Mg Alloyed Al-Mg Alloys During High Strain Rate Rolling Deformation, Mater. Sci. Eng. A, 2019, 753, p 59–69.

    Article  CAS  Google Scholar 

  18. J. Hirsch and K. Lücke, Mechanism of Deformation and Development of Rolling Textures in Polycrystalline F.C.C. Metals-I. Description of Rolling Textures Development in Homogeneous CuZn Alloys, Acta Metall., 1988, 36, p 2863–2882.

    Article  CAS  Google Scholar 

  19. J. Hirsch, K. Lücke and M. Hatherly, Mechanism of Deformation and Development of Rolling Textures in Polycrystalline F.C.C. Metals-III. The Influence of Slip Inhomogeneities and Twinning, Acta Metall., 1988, 36, p 2905–2927.

    Article  CAS  Google Scholar 

  20. R. Jamaati and M.R. Toroghinejad, Effect of Stacking Fault Energy on Deformation Texture Development of Nanostructured Materials Produced by the ARB Process, Mater. Sci. Eng. A, 2014, 598, p 263–276.

    Article  CAS  Google Scholar 

  21. J.R. Gatti and P.P. Bhattacharjee, Effect of Prior Recovery Treatment on the Evolution of Cube Texture During Annealing of Severely Warm-Rolled Al-2.5 wt pct Mg Alloy, Metall. Mater. Trans. A, 2015, 46, p 4966–4977.

    Article  CAS  Google Scholar 

  22. L. Fu, Y. Li, F.Q. Jiang, J.W. Huang, G.F. Xu and Z.M. Yin, On the Role of Sc or Er Micro-Alloying in the Microstructure Evolution of Al-Mg Alloy Sheets During Annealing, Mater. Charact, 2019, 157, p 109918.

    Article  CAS  Google Scholar 

  23. T. Mukai, K. Higashi and S. Tanimura, Influence of the Magnesium Concentration on the Relationship Between Fracture Mechanism and Strain rate in High Purity Al-Mg Alloys, Mater. Sci. Eng. A, 1994, 176, p 181–189.

    Article  CAS  Google Scholar 

  24. O. Reyn, O. Nijs, E. Sjoander, B. Holmedal, H.E. Ekstrom and E. Nes, Strengthening Mechanisms in Solid Solution Aluminum Alloys, Metall. Mater. Trans. A, 2006, 37, p 1999–2006.

    Article  Google Scholar 

  25. E.L. Huskins, B. Cao and K.T. Ramesh, Strengthening Mechanisms in an Al-Mg Alloy, Mater. Sci. Eng. A, 2010, 527, p 1292–1298.

    Article  Google Scholar 

  26. Y.J. Lin, H.M. Wen, Y. Li, B. Wen, W. Liu and E.J. Lavernia, An Analytical for Stress-Induced Grain Growth in the Presence of both Secong-Phase Particles and Solute Segregation at Grain Boundaries, Acta Mater., 2015, 82, p 304–315.

    Article  CAS  Google Scholar 

  27. G.K. Williamson and R.E. Smallman, Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on X-ray Debye-Scherrer Spectrum, Philos. Mag., 1956, 1, p 34–46.

    Article  CAS  Google Scholar 

  28. X.Y. Li, W.J. Xia, H.G. Yan, J.H. Chen, B. Su, M. Song, Z.Z. Li and Y. Lu, High Strength and Large Ductility of a Fine-Grained Al-Mg Alloy Processed by High Strain Rate Hot Rolling and Cold Rolling, Mater. Sci. Eng. A, 2020, 787, p 139481.

    Article  CAS  Google Scholar 

  29. R.K. Gupta, R. Zhang, C.H.J. Davies and N. Birbilis, Influence of Mg Content on the Sensitization and Corrosion of Al-xMg(-Mn) Alloys, Corros., 2013, 69, p 1081–1087.

    Article  CAS  Google Scholar 

  30. K.D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: A Review, Corrosion, 2020, 66, p 1–13.

    Google Scholar 

  31. P. Zhang, W.J. Xia, H.G. Yan, J.H. Chen, B. Su, X.Y. Li and X.L. Li, Mechanical Properties, Corrosion Behavior, and Microstructure of Sr Modified Al-9.2Mg-0.7Mn Alloys, Mater. Corros., 2019, 2019(70), p 1798–1807.

    Article  Google Scholar 

  32. Z.S. Smialowska and J. Gust, The Initiation of Stress Corrosion Cracking and Pits in Austenitic Cr-Ni Steel in MgCl2 Solutions at 40–90 °C, Corros. Sci., 1979, 19, p 753–765.

    Google Scholar 

  33. Y.C. Huang, Y. Li, Z.B. Xiao, Y. Liu, Y.T. Huang and X.W. Ren, Effect of Homogenization on the Corrosion Behavior of 5083–H321 Aluminum Alloy, J. Alloys Compd., 2016, 673, p 73–79.

    Article  CAS  Google Scholar 

  34. G.M. Scamans and A.S. Rehal, Electron Metallography of the Aluminum-Water Vapour Reaction and its Relevance to Stress-Corrosion Susceptibility, J. Mater. Sci., 1979, 14, p 2459–2470.

    Article  CAS  Google Scholar 

  35. G.M. Scamans, N.J.H. Holroyd and C.D.S. Tuck, The Role of Magnesium Segregation in the Intergranular Stress Corrosion Cracking of Aluminum Alloys, Corros. Sci., 1987, 27, p 329–347.

    Article  CAS  Google Scholar 

  36. E.H. Dix, W.A. Anderson and M.B. Shumaker, Influence of Service Temperature on the Resistance of Wrought Aluminum-Magnesium Alloys to Corrosion, Corros., 1959, 15, p 19–26.

    Article  Google Scholar 

  37. X.L. Li, W.J. Xia, H.G. Yan, J.H. Chen and X.Y. Li, Improving Strength and Corrosion Resistance of High Mg Alloyed Al-Mg-Mn Alloys Through Ce Addition, Corros. Eng. Sci. Technol., 2020, 55(5), p 381–391.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors. The authors would like to express their sincere gratitude to Mr. Siyu Wan in School of Mechanical and Transportation Engineering, Guangxi University of Science and Technology, for his assistance in the texture and dislocation density measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongge Yan or Jihua Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, T., Yan, H., Chen, J. et al. Effects of Rolling Deformation on Microstructure, Tensile Properties and Corrosion Behaviors of High Mg Alloyed of Al-Mg Alloy. J. of Materi Eng and Perform 31, 2168–2181 (2022). https://doi.org/10.1007/s11665-021-06365-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06365-0

Keywords

Navigation