Skip to main content
Log in

Effect of Prior Recovery Treatment on the Evolution of Cube Texture During Annealing of Severely Warm-Rolled Al-2.5 wt pctMg Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of prior recovery on the evolution of cube texture ({001}〈100〉) in severely warm-rolled and annealed Al-2.5 wt pctMg alloy was studied. The Al-2.5 wt pctMg alloy was warm rolled to 97 pct reduction in thickness at 473 K (200 °C). The warm-rolled sheets were isochronally annealed for 1 hour at temperatures ranging from 523 K to 673 K (250 °C to 400 °C) without and with prior recovery treatments. In case of prior recovery, the sheets were pre-treated at 473 K (200 °C) for different time intervals ranging from 3.6 × 103 seconds (1 hour) to 8.64 × 104 seconds (24 hours) before the annealing. The warm-rolled alloy showed finely subdivided lamellar structure and strong presence of pure metal type texture. The annealed materials without any prior recovery treatment showed strong cube texture after annealing which could be attributed to the oriented nucleation of cube grains resulting from the preferentially recovered structure of cube regions in the warm-rolled state. In contrast, the cube texture was significantly weakened in materials subjected to different prior recovery treatments. The prior recovery treatments resulted in homogenous recovery which was confirmed by microstructural, textural, and conductivity measurements. Homogenous recovery eliminated the nucleation advantage of cube regions originating from the preferentially recovered structure and weakened the cube texture significantly. The present results indicated that prior recovery treatment could be effectively used to control recrystallization cube texture in severely warm-rolled aluminum alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Hirsch and K. Lucke: Acta Metall., 1988, 36, pp. 2863–82.

    Article  Google Scholar 

  2. J. Hirsch, K. Lucke and M. Hatherly: Acta Metall., 1988, 36, pp. 2905–27.

    Article  Google Scholar 

  3. T. Leffers and R.K. Ray: Prog. Mater. Sci., 2009. 54: p. 351–96.

    Article  Google Scholar 

  4. O. Engler: Scripta Mater., 2001, 44. pp. 229–36.

    Article  Google Scholar 

  5. O.V. Mishin, A. Godfrey, D. Juul Jensen, N. Hansen: Acta Mater., 2013, 61, pp. 5354–64.

    Article  Google Scholar 

  6. O. Engler, H.E. Vatne, and E. Nes: Mater. Sci. Eng. A, 1996, 205, pp. 187–98.

    Article  Google Scholar 

  7. O. Engler: Metall. Mater. Trans. A, 1999, 30A, pp. 1517–27.

    Article  Google Scholar 

  8. W.C. Liu and J.G. Morris: Mater. Sci. Eng. A, 2003, 363, pp. 253–62.

    Article  Google Scholar 

  9. W.C. Liu, T. Zhai, C.S. Man and J.G. Morris: Scripta Mater., 2003, 49, pp. 539–45.

    Article  Google Scholar 

  10. K. Lucke, and O. Engler: Mater. Sci. Tech., 1990, 6, pp. 1113–30.

    Article  Google Scholar 

  11. O. Daaland, and E. Nes: Acta Mater., 1996, 44, pp. 1413–35.

    Article  Google Scholar 

  12. W.C. Liu and J.G. Morris: Metall. Mater. Trans. A., 2005, 36A, pp. 2829–48.

    Article  Google Scholar 

  13. C. Schäfer and G. Gottstein: Int. J. Mater. Res., 2011, 102, pp. 1106–14.

    Article  Google Scholar 

  14. K. Huang, O. Engler, Y.J. Li and K. Marthinsen: Mater. Sci. Eng. A, 2015, 628(0), pp. 216–29.

    Article  Google Scholar 

  15. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.JuulJensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett: Mater. Sci. Eng. A, 1997, 238, pp. 219–74.

    Article  Google Scholar 

  16. I.L. Dillamore and H. Katoh: Met. Sci. J., 1974, 8, pp. 73–83.

    Article  Google Scholar 

  17. I. Samajdar and R.D. Doherty: Acta Mater., 1998, 46, pp. 3145–58.

    Article  Google Scholar 

  18. H.E. Vatne, T. Furu, R. Ørsund, E. Nes: Acta Mater., 1996, 44, pp. 4463–73.

    Article  Google Scholar 

  19. J.C. Glez and J.H. Driver: Acta Mater., 2003, 51, pp. 2989–3003.

    Article  Google Scholar 

  20. G. Guiglionda, A. Borbély, and J.H. Driver: Acta Mater., 2004, 52, pp. 3413–23.

    Article  Google Scholar 

  21. A.A. Ridha and W.B. Hutchinson: Acta Metall., 1982, 30, pp. 1929–39.

    Article  Google Scholar 

  22. F.J. Humphreys and M. Hatherly, in Recrystallization and Related Annealing Phenomena, (Second Edition), 2004, Elsevier, Oxford.

    Google Scholar 

  23. K. Huang, N. Wang, Y. Li, K. Marthinsen: Mater. Sci. Eng. A, 2014, 601(0), pp. 86–96.

    Article  Google Scholar 

  24. M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, A.D. Rollett: Acta Mater., 2008, 56, pp. 3098–108.

    Article  Google Scholar 

  25. M.Y. Huh, S.Y. Cho, and O. Engler: Mater. Sci. Eng. A, 2001, 315, pp. 35–46.

    Article  Google Scholar 

  26. W.C. Liu, J. Li, H. Yuan, Q.X. Yang: Scripta Mater., 2007, 57, pp. 833–36.

    Article  Google Scholar 

  27. K. Huang, Y.J. Li, and K. Marthinsen: Mater. Charact., 2015, 102(0), pp. 92–97.

    Article  Google Scholar 

  28. H. Inoue and T. Takasugi: Mater. Trans., 2007, 48, pp. 2014–22.

    Article  Google Scholar 

  29. O. Engler, H.C. Kim, and M.Y. Huh: Mater. Sci. Tech., 2001, 17, pp. 75–86.

    Article  Google Scholar 

  30. J.R. Gatti and P.P. Bhattacharjee: J. Alloy Compd., 2014, 615, pp. 950–61.

    Article  Google Scholar 

  31. M.Y. Huh, H.D. Kim, K.R. Lee, B.B. Hwang and O. Engler: Mater. Sci. Forum, 2002, 408–412 1453–58.

    Article  Google Scholar 

  32. N. Tsuji, Y. Saito, S.H. Lee and Y. Minamino: Adv. Eng. Mater., 2003, 5, pp. 338–44.

    Article  Google Scholar 

  33. T. Yu, N. Hansen, and X. Huang: Acta Mater., 2013, 61, pp. 6577–86.

    Article  Google Scholar 

  34. T. Yu, N. Hansen: Proc. R. Soc. Lond. A Mat., 2011, 467, pp. 3039–65.

    Article  Google Scholar 

  35. L. Radovic and M. Nikacevic: Sci. Tech. Rev, 2008, 58, 14–19.

    Google Scholar 

  36. H. Takuda, N. Yamazaki, N. Hatta, S. Kikuchi: J. Mater. Sci., 1995, 30, pp. 957–63.

    Article  Google Scholar 

  37. X.L. Li, W. Liu, A. Godfrey, D. Juul Jensen, Q. Liu: Acta Mater., 2007, 55, pp. 3531–40.

    Article  Google Scholar 

  38. P.P. Bhattacharjee, R.K. Ray, and N. Tsuji: Acta Mater., 2009, 57, pp. 2166–79.

    Article  Google Scholar 

  39. S. Raveendra, S. Mishra, K.V.M. Krishna, H. Weiland, I. Samajdar: Metall. Mater. Trans. A, 2008, 39A, pp. 2760–71.

    Article  Google Scholar 

  40. C. Bairoz, 3rd International Conference on Aluminum Alloys (ICAA 3)., Trondheim, Norway, 22–26 June, 1992.

  41. E.C.W. Perryman: Trans. Am. Inst. Min. Metall. Eng. 1955, vol. 203, pp. 369-78.

    Google Scholar 

  42. N.M. Hwang: Scripta Mater., 1997, 37, pp. 1637–42.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support of DST, India through Grant No. SR/FTP/ETA-126/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinaki Prasad Bhattacharjee.

Additional information

Manuscript submitted October 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatti, J.R., Bhattacharjee, P.P. Effect of Prior Recovery Treatment on the Evolution of Cube Texture During Annealing of Severely Warm-Rolled Al-2.5 wt pctMg Alloy. Metall Mater Trans A 46, 4966–4977 (2015). https://doi.org/10.1007/s11661-015-3129-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3129-4

Keywords

Navigation