Skip to main content

Advertisement

Log in

Composition-Optimized Cu-Zn-(Mn, Fe, Si) Alloy and Its Microstructural Evolution with Thermomechanical Treatments

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High strength and large ductility of existing Mn-containing brass alloys need to be further improved when used as slippers of friction-pair materials, which could be achieved by tuning alloy composition and thermomechanical treatments appropriately. The present work optimized the amount of minor-alloying elements M (M = Mn, Fe, Si) in Cu-Zn alloy via a cluster formula approach and then investigated the microstructural evolution of the designed alloy with different thermomechanical treatments. As-cast alloy ingots were solid-solutioned at 1093 K (820 °C) for 3 h, hot-rolled at 923 ~ 1023 K (650 ~ 750 °C), and then aged at 673 ~ 723 K (400 ~ 450 °C) for 1 ~ 2 h, respectively. It is found that the alloy matrix consists of the main FCC-α phase plus a small amount of BCC-β and M5Si3 phases, among which the M5Si3 exhibits three types of primary, fine, and nano-scaled particles. The mechanical property varies with the thermomechanical treatments due to diverse microstructures (especially the morphology of M5Si3 particles), in which the high strength (σUTS > 580 MPa) and large ductility (δ = 16.3 ~ 29.4%) could be achieved simultaneously in 673 K (400 °C). The optimal matching of high strength and large ductility makes the current alloy more suitable as an alternative slipper material. The strengthening effect was further discussed in light of various strengthening mechanisms, and the calculated strength increment is well consistent with the experimentally measured yield strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Alizadeh and M. Avazzadeh, Evaluation of Cu-26Zn-5Al Shape Memory Alloy Fabricated by Accumulative Roll Bonding Process, Mater. Sci. Eng. A, 2019, 757, p 88–94.

    Article  CAS  Google Scholar 

  2. P.F. Wang, J.C. Jie, X.L. Sun, W.G. Liu and T.J. Li, Simultaneous Achievement of High Strength and Superior Ductility in an As-Rolled Cu-30Zn Brass, J. Mater. Eng. Perform., 2019, 28, p 7782–7788.

    Article  CAS  Google Scholar 

  3. T.J. Li, Y.Q. Wang, M. Yang, H.L. Hou and S.J. Wu, High Strength and Conductivity Copper Matrix Composites Reinforced by In-situ Graphene Through Severe Plastic Deformation Processes, J. Alloys Compd., 2021, 851, p 156703.

    Article  CAS  Google Scholar 

  4. S.F. Li, H. Imai, H. Atsumi and K. Kondoh, An Investigation of Microstructure and Phase Transformation Behavior of Cu40Zn-1.0 wt.% Ti Brass Via Powder Metallurgy, J. Mater. Eng. Perform., 2013, 22, p 3168–3174.

    Article  CAS  Google Scholar 

  5. G. Haidak, D. Wang, S.J. E and F.Y. Li, (2019) The Impact of the Deformation Phenomenon on the Process of Lubricating and Improving the Efficiency Between the Slipper and Swashplate in Axial Piston Machines, IEEE Access, 7, p 69393-69409

  6. J. Ma, J. Chen, J. Li, Q. Li and C. Ren, Wear Analysis of Swash plate/slipper Pair of Axis Piston Hydraulic Pump, Tribol. Int., 2015, 90, p 90467–90472.

    Article  Google Scholar 

  7. B. Xu, J.H. Zhang and Y.H. Yang, Investigation on Structural Optimization of Anti-overturning Slipper of Axial Piston Pump, Sci. China Technol. Sci., 2012, 55(11), p 3010–3018.

    Article  Google Scholar 

  8. M.H. Wang, K. Wei, X.J. Li and A.Z. Tu, Constitutive Modeling for High Temperature Flow Behavior of a High-Strength Manganese Brass, J. Cent. South Univ., 2018, 25(7), p 1560–1572.

    Article  CAS  Google Scholar 

  9. Y.S. Sun, G.W. Lorimer and N. Ridley, Microstructure of High-Tensile Strength Brasses Containing Silicon and Manganese, Mater. Trans., 1989, 20(7), p 1199–1206.

    Google Scholar 

  10. N.Y. Titarev, V.Y. Moroz and A.G. Melakh, Treatment Structure and Mechanical Properties of LMtsSK-type Brass After Strengthening Heat Treatment, Met. Sci. Heat Treat., 1986, 28(11), p 828–832.

    Article  Google Scholar 

  11. N.B. Pugacheva, Structure and Properties of Alloys and Coatings with Ordered β-phase After Heat Treatment, Met. Sci. Heat Treat, 2007, 49(5–6), p 240–247.

    Article  CAS  Google Scholar 

  12. A. Waheed and N. Ridley, Microstructure and Wear of Some High-Tensile Brasses, J. Mater. Sci., 1994, 29(6), p 1692–1699.

    Article  CAS  Google Scholar 

  13. H. Li, J.C. Jie, S.C. Liu, Y.B. Zhang and T.J. Li, Crystal Growth and Morphology Evolution of D88 (Mn, Fe)5Si3 phase and its Influence on the Mechanical and Wear Properties of Brasses, Mater. Sci. Eng. A, 2017, 704(17), p 45–56.

    Article  CAS  Google Scholar 

  14. L.F. Bie, X.H. Chen, P. Liu, T. Zhang and X.G. Xu, Morphology Evolution of Mn5Si3 Phase and Effect of Mn content on Wear Resistance of Special Brass, Met. Mater. Int., 2019, 26(3), p 431–443.

    Google Scholar 

  15. N.B. Pugacheva, A.A. Pankratov, N.Y. Frolova and I.V. Kotlyarov, Structural and phase transformations in α + β brasses, Russ. Metall, 2006, 2006(3), p 239–248.

    Article  Google Scholar 

  16. R.K. Mysik, A.V. Sulitsin and S.V. Brusnitsyn, Influence of Intermetallics on Complex Alloyed Brass Hardness, Solid State Phenom, 2017, 265, p 789–792.

    Article  Google Scholar 

  17. Z.W. Wang, S.H. Chen, Y.F. Li, L.J. Peng and H.F. Xie, Influence of Ce on Microstructures and Mechanical Properties of HMn64-8-5-1.5 Brass, Mater. Sci. Forum, 2016, 852, p 472–479.

    Article  Google Scholar 

  18. H. Li, J.C. Jie, Q. Zhang and T.J. Li, Effect of Annealing Treatment on the Microstructures, Mechanical, and Wear Properties of a Manganese Brass Alloy, J. Mater. Res., 2016, 31(10), p 1491–1500.

    Article  CAS  Google Scholar 

  19. J. Anantapong, V. Uthaisangsuk, S. Suranuntchai and A. Manonukul, Effect of Hot Working on Microstructure Evolution of as-cast Nickel Aluminum Bronze Alloy, Mate. Des., 2014, 60(8), p 233–243.

    Article  CAS  Google Scholar 

  20. C. Mapelli and R. Venturini, Dependence of the Mechanical Properties of an α/β Brass on the Microstructural Features Induced by Hot Extrusion, Scripta Mater., 2006, 54(6), p 1169–1173.

    Article  CAS  Google Scholar 

  21. L. Suárez, P. Rodriguez-Calvillo, J.M. Cabrera, A. Martínez-Romay and D. Majuelos-Mallorquín.A,(2015) Hot working Analysis of a CuZn40Pb2 Brass on the Monophasic (β) and Intercritical (α+β) Regions, Mater. Sci. Eng. A, 627: 42-50

  22. M. Aghaie-Khafri and A. Mohebati-Jouibari, Thermomechanical Treatment of 70/30 Brass Containing Iron Impurity, J. Mater. Sci., 2006, 41(22), p 7585–7589.

    Article  CAS  Google Scholar 

  23. Q. Wang, C.J. Ji, Y.G. Wang, J.B. Qiang and C. Dong, β-Ti Alloys with Low Young’s Moduli Interpreted by Cluster-Plus-Glue-Atom Model, Metall. Mater. Tran. A, 2013, 44, p 1872–1879.

    Article  CAS  Google Scholar 

  24. C. Pang, B.B. Jiang, Y. Shi, Q. Wang and C. Dong, Cluster-Plus-Glue-Atom Model And Universal Composition Formulas [cluster](glue atom)x for BCC Solid Solution Alloys, J. Alloys Compd., 2015, 652, p 63–69.

    Article  CAS  Google Scholar 

  25. Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong and T.G. Nieh, Controlled Formation of Coherent Cuboidal Nanoprecipitates in Body-Centered Cubic High-Entropy Alloys based on Al2(Ni Co, Fe, Cr)14 Compositions, Acta. Mater., 2018, 147, p 213–225.

    Article  CAS  Google Scholar 

  26. Q.X. Yu, X.N. Li, X N, K.R Wei, Z.M. Li, Y.H. Zheng, N.J. Li, X.T. Cheng, C.Y. Wang, Q. Wang and C. Dong,(2019) Cu–Ni–Sn–Si Alloys Designed by Cluster-Plus-Glue-Atom Model, Mater. Des 167: 107641

  27. H.L. Hong, Q, Wang, C, Dong and P.K. Liaw,(2014) Understanding the Cu-Zn Brass Alloys using a Short-Range-Order Cluster Model: Significance of Specific Compositions of Industrial alloys, Sci. Rep., 4: 7065

  28. Baker H, ASM Handbook volume 3-alloy phase diagrams, ASM International, US, 1992, p. 780

  29. A. Takeuchi and A. Inoue, Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys, Mater. Tran. JIM, 2007, 41(11), p 1372–1378.

    Article  Google Scholar 

  30. H. Mindivan, H. Cimenoglu and E.S. Kayali, Microstructures and Wear Properties of Brass Synchroniser Rings, Wear, 2003, 254(5), p 532–537.

    Article  CAS  Google Scholar 

  31. S.M. Dasharath, C.C. Koch and S. Mula, Effect of Stacking Fault Energy on Mechanical Properties and Strengthening Mechanisms of Brasses Processed by Cryorolling, Mater. Charact., 2015, 110, p 14–24.

    Article  CAS  Google Scholar 

  32. N.N. Krishna, R. Tejas, K. Sivaprasad and K. Venkateswarlu, Study on Cryorolled Al-Cu Alloy using X-ray Diffraction Line Profile Analysis and Evaluation of Strengthening Mechanisms, Mater. Des., 2013, 52, p 785–790.

    Article  Google Scholar 

  33. V.S. Sarma, K. Sivaprasad and D. Sturm.M. Heilmaier,(2008) Microstructure and Mechanical Properties of Ultra Fine Grained Cu–Zn and Cu–Al Alloys Produced by Cryorolling and Annealing, Mater. Sci. Eng. A, 489(1-2): 253-258

  34. D.V. Kudashov, H. Baum, U. Martin, M. Heilmaier and H. Oettel, Microstructure and Room Temperature Hardening of Ultra-Fine-Grained Oxide-Dispersion Strengthened Copper Prepared by Cryomilling, Mater. Sci. Eng. A, 2004, 387, p 768–771.

    Article  Google Scholar 

  35. G. Qin, R.R. Chen, H.T. Zheng, H.Z. Fang, L. Wang, Y.Q. Su, J.J. Guo and H.Z. Fu, Strengthening FCC-CoCrFeMnNi High Entropy Alloys by Mo Addition, J. Mater. Sci. Technol., 2019, 35, p 578–583.

    Article  Google Scholar 

  36. H. Zhuo, J.C. Tang and N. Ye, A Novel Approach for Strengthening Cu-Y2O3 Composites by In situ Reaction at Liquidus Temperature, Mater. Sci. Eng. A, 2013, 584(1), p 1–6.

    Article  CAS  Google Scholar 

  37. E.I. Galindo-Nava, W.M. Rainforth and P.E.J. Rivera-Díaz-del-Castillo, Predicting Microstructure and Strength of Maraging Steels: Elemental Optimisation, Acta Mater., 2016, 117, p 270–285.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

It was supported by the National Natural Science Foundation of China [91860108] and Natural Science Foundation of Liaoning Province of China (2019-KF-05-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Dong or Zhen Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, P., Niu, B., Wang, N. et al. Composition-Optimized Cu-Zn-(Mn, Fe, Si) Alloy and Its Microstructural Evolution with Thermomechanical Treatments. J. of Materi Eng and Perform 31, 590–601 (2022). https://doi.org/10.1007/s11665-021-06206-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06206-0

Keywords

Navigation