Skip to main content
Log in

Studies on the Susceptibility of Modified 9Cr-1Mo Steel to Stress Corrosion Cracking in Sodium Hydroxide Using Slow Strain Rate Testing Technique

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Round tensile specimens of modified 9Cr-1Mo steel were subjected to slow strain rate tests in 1-4 M sodium hydroxide (NaOH) solutions at 473 K to evaluate their susceptibility to caustic stress corrosion cracking (CSCC). The results obtained in NaOH solutions were compared with specimen tested in de-mineralized (DM) water. Secondary stress corrosion cracks were observed in all specimens tested in 1-4 M NaOH, the number of secondary cracks increased with increase in concentration up to 3 M. Tensile test data showed that ductility (%TE) decreased with increasing concentration of NaOH up to 3 M and nearly remained the same for 4 M NaOH. Time to failure was highest for specimen exposed in DM water and decreased with increasing concentration up to 3 M and remained constant thereafter. Crack velocity showed a trend of increasing velocity with increasing concentration of caustic media up to 3 M and remained same for 4 M NaOH. Laser Raman spectroscopic (LRS) analysis confirmed dissolution of protective magnetite and accelerated corrosion on the specimens exposed to 1-4 M NaOH solutions, leading to the formation of a number of oxides and oxyhydroxides. Fractographic studies showed typical surface oxide cracking with decohesions in all specimens. The studies showed that P91 steel is susceptible to CSCC in the concentrations from 1 to 4 M NaOH solutions at 473 K at a strain rate of 10−6 s−1. The evidence for dissolution of magnetite and the presence of decohesions indicated an important role for hydrogen in caustic cracking of P91 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Caustic Stress Corrosion Cracking, No. 13, Technical Awareness Bulletin, Materials Technology Institute Inc. 2012

  2. W. Lee Williams, Chloride and Caustic Stress Corrosion of Austenitic Stainless Steel in Hot Water and Steam, Corrosion, 1957, 13, p 67–73

    Google Scholar 

  3. T.V. Vinoy, H. Shaikh, H.S. Khatak, N. Sivaibharasi, and J.B. Gnanamoorthy, Stress Corrosion Crack Growth Studies on AISI Type Stainless Steel in Boiling Acidified Sodium Chloride Solution, J. Nucl. Mater., 1996, 238, p 278–284

    CAS  Google Scholar 

  4. W. Yang, G. Zhao, M. Zhang, and J. Congleton, An AES Investigation of the Surface Films Formed on Stress Corrosion Test Specimens of Type 304 Stainless Steel in High Temperature Water, Corros. Sci., 1992, 33, p 89–102

    CAS  Google Scholar 

  5. S.L. Mannan, S.C. Chetal, B. Raj, S.B. Bhoje, Selection of materials for prototype fast breeder reactor, in Proceedings of the Materials R&D for PFBR, IGCAR, Kalpakkam, 2003, pp. 9–44

  6. S. Kishore, F. Beauchamp, A. Alexandre, A. Ashok Kumar, S. Chandramouli, and K.K. Rajan, Impingement Wastage Experiments with 9Cr-1Mo Steel, Nucl. Eng. Des., 2016, 297, p 104–110

    CAS  Google Scholar 

  7. J.R. Donati, M. Grand, and P. Spiteri, Etude des phenomenes de corrosion consecutifs a une micro-reaction sodium-eau dansune fissure traversante d’un tube de generateur de vapeur de reagteurrapide, J. Nucl. Mater., 1974, 542, p 217–223

    Google Scholar 

  8. C.M. Younes, F.H. Morrissey, G.C. Allen, and P. McIntyre, Effect of Heat TREATMENT on Grain Boundary Chemistry and Resistance to Intergranular CORROSION of Alloys 600 and 690, Br. Corros. J., 1997, 32, p 185–192

    CAS  Google Scholar 

  9. J.-Y. Jeong, J.-M. Kim, T.-J. Kim, J.-H. Choi, B.-H. Kim, Y. Lee, Wastage of steam generator tubes by sodium-water reaction, in: Transactions of the Korean Nuclear Society Autumn Meeting, Jeju, Korea, 2010, pp. 41–42

  10. B. Poulson, Caustic Cracking of 9Cr 1Mo Steel at 300 °C, Corros. Sci., 1982, 22, p 473–486

    CAS  Google Scholar 

  11. DOE-HDBK-1015, DOE fundamentals handbook, Chemistry module 2, Corrosion, U.S. DOE, Washington, 1993, pp. 1–93

  12. Z.W. Yang, D. Huang, D. Kong, G. Zhao, and J. Congleton, Caustic Stress Corrosion CRACKING of Nickel-Rich, Chromium-Bearing Alloys, Corros. Sci., 2001, 43, p 963–977

    CAS  Google Scholar 

  13. D. Singbeil and D. Tromans, Caustic Stress Corrosion Cracking of Mild Steel, Metall. Trans. A, 1982, 13, p 1091–1098

    Google Scholar 

  14. K. Abouswa, F. Elshawesh, and A. Abuargoub, Stress Corrosion Cracking (Caustic Embrittlement) of Super Heater Tubes, Desalination, 2008, 222, p 682–688

    CAS  Google Scholar 

  15. M. Yasuda, M. Okada, and F. Hin, Corrosion of Carbon Steel in Hot NaOH Solutions Under Heat Transfer Conditions, Corrosion, 1982, 38, p 256–261

    CAS  Google Scholar 

  16. ASTM Standard E8/E8M-13a, Standard test methods for testing of metallic materials. ASTM International, West Conshohocken, PA 19428-2959, United States, 2013, pp. 1–28

  17. P. Muraleedharan, Metallurgical influences on stress corrosion behaviour of austenitic stainless steels in chloride media, Ph.D. thesis, 1993

  18. E. Henthorne, The Slow Strain Rate Stress Corrosion Cracking Test: a 50 yEAR retrospective M. Henthorne, Corrosion, 2016, 72(12), p 1488–1518

    Google Scholar 

  19. A. Dessert and R. Oltra, The Influence of Plastic Straining on Localized and General Corrosion of Stainless Steels, Corros. Sci., 1980, 20, p 799–820

    Google Scholar 

  20. M.G. Fontana, Eight Forms of Corrosion, Corrosion Engineering, 3rd ed., McGraw Hill Education, New York, 2005, p 112–114

    Google Scholar 

  21. A.R. McIlree and H.T. Michels, Stress Corrosion Behaviour of Fe-Cr-Ni and Other Alloys in High Temperature Caustic Solutions, Corrosion, 1977, 33, p 60–67

    CAS  Google Scholar 

  22. V. Thomas Paul, S. Saroja, and M. Vijayalakshmi, Microstructural Stability of Modified 9Cr-1Mo Steel During Long Term Exposures at Elevated Temperatures, J. Nucl. Mater., 2008, 378, p 273–281

    CAS  Google Scholar 

  23. U. Schwertmann and H. Fechter, The Formation of Green Rust and Its Transformation to Lepidocrocite, Clay Miner., 1994, 29, p 87–92

    CAS  Google Scholar 

  24. T.S. Gendler, V.P. Shcherbakov, M.J. Dekkers, A.K. Gapeev, S.K. Gribov, and E. McClell, The Lepidocrocite–Maghemite–Haematite Reaction Chain—I. Acquisition of Chemical Remanent Magnetization by Maghemite, Its Magnetic Properties and Thermal Stability, Geophys. J. Int., 2005, 160, p 815–832

    CAS  Google Scholar 

  25. P.M.A. De Bakker, E. De Grave, R.E. Vandenberghe, L.H. Bowen, R.J. Pollard, and M. Persoons, Study of the Thermal Decomposition of Lepidocrocite and Characterization of the Decomposition Products, Phys. Chem. Miner., 1991, 18, p 131–143

    Google Scholar 

  26. O. Ozdemir and S.K. Banerjee, High Temperature Stability of Maghemite, Geophys. Res. Lett., 1984, 11, p 161–164

    CAS  Google Scholar 

  27. A. Matthews, Magnetite Formation by the Reduction of Hematite with Iron Under Hydrothermal Condition, Am. Mineral., 1976, 6, p 927–932

    Google Scholar 

  28. A. Matthews, Oxygen isotope geology: experimental calibration of geothermometers with related experimental investigations. Ph.D. thesis, University of Manchester, 1973

  29. Hans-Peter Hermansson, The Stability of Magnetite and its Significance as a Passivating Film in the Repository Environment, in: Studsvik Nuclear AB SE-611 82 Nyköping, Sweden, 2004, vol. 5, pp. 103–109

  30. K. Asami, K. Hashimoto, and S. Shimodaira, An ESCA Study of the Fe2+/Fe3+ Ratio in Passive Films on Iron-Chromium Alloys, Corros. Sci., 1976, 1, p 387–397

    Google Scholar 

  31. K. Sigimoto and Y. Sawada, The Role of Molybdenum Additions to Austenitic Stainless Steels in the Inhibition of Pitting in acid chloride Solutions, Corros. Sci., 1977, 17, p 425–445

    Google Scholar 

  32. O. Monnereau, L. Torte, C.E.A. Grigorescu, D. Savastru, C.R. Iordanescu, F. Guinneton, R. Notonier, A. Tonetto, T. Zhang, I.N. Mihailescu, D. Stanoi, and H.J. Trodahl, Chromium Oxides Mixtures in PLD Films Investigated by Raman Spectroscopy, J. Optoelectron. Adv. Mater., 2010, 12, p 1752–1757

    CAS  Google Scholar 

  33. S. Król and M. Pietrzyk, Formation of Corrosion Products Protecting Surfaces of the Boiler Proper Tubes from the Combustion Chamber, J. Achiev. Mater. Manuf. Eng., 2007, 21, p 45–48

    Google Scholar 

  34. M.G. Fontana, Eight Forms of Corrosion, Corrosion Engineering, 3rd ed., McGraw Hill Education, New York, 2005, p 109–126

    Google Scholar 

  35. D. Singbeil and D. Thomas, Caustic Stress Corrosion Cracking of Mild Steel, Metall. Trans. A, 1982, 13, p 1092–1098

    Google Scholar 

  36. R.K.S. Raman, R. Rihan, and R.N. Ibrahim, Circumferential Notch Tensile Testing, Role of Imposed Electrochemical Potentials in Susceptibility of Steel to caustic Cracking, J. Electrochem. Soc., 2007, 154, p C658–C662

    CAS  Google Scholar 

  37. J. Woodtli and R. Kieselbach, Damage Due to Hydrogen Embrittlement and Stress Corrosion Cracking, Eng. Fail. Anal., 2000, 7, p 427–450

    CAS  Google Scholar 

  38. E.I. Meletis and R.F. Hochman, A Review of the Crystallography of Stress Corrosion Cracking, Corros. Sci., 1986, 26, p 63–90

    CAS  Google Scholar 

  39. N. Eliaz, A. Shachar, B. Tal, and D. Eliezer, Characteristics of Hydrogen Embrittlement, Stress Corrosion Cracking and Tempered Martensite Embrittlement in High Strength Steels, Eng. Fail. Anal., 2002, 9, p 167–184

    CAS  Google Scholar 

  40. J. Cwiek, Hydrogen Degradation of High-Strength Steels, J. Achiev. Mater. Manuf. Eng., 2009, 37, p 193–212

    Google Scholar 

  41. G. Butler, H.C.K. Ison, and A.D. Mecer, Some Important Aspects of Corrosion in Central Heating Systems, Br. Corros. J., 1971, 6, p 31–38

    Google Scholar 

  42. H.E. Townsend, Jr., Potential-pH Diagrams at Elevated Temperature for the System Fe-H2O, Corros. Sci., 1970, 10, p 343–358

    CAS  Google Scholar 

  43. M.R. Louthan, Jr., Hydrogen Embrittlement of Metals: A Primer for the Failure Analyst, J. Fail. Anal. Prev., 2008, 8, p 289–307

    Google Scholar 

  44. G.M.W. Mann, The oxidation of iron base alloys containing less than 12% Cr in high temperature aqueous solutions, high temperature high pressure electrochemistry in aqueous solutions, in: NACE-4, University of Surrey, 1973, pp. 34–47

  45. L. Tomlinson, M.H. Hurdus, C.B. Ashmore, and P.J.B. Silver, Sodium Heated Steam Generator Tubes: Effect of Heat Flux on the Deposition of Magnetite from Solution and Corrosion of the Underlying Steel, Corrosion, 1985, 41, p 257–264

    CAS  Google Scholar 

  46. D.R. Harries, J.M. Dupouy, and C.H. Wu, Materials Research and Development for NET, J. Nucl. Mater., 1985, 133, p 25–31

    Google Scholar 

  47. Z. Ahmed, Principles of corrosion engineering and corrosion control, Butterworth-Heinemann, Burlington, 2006, p 604

    Google Scholar 

  48. C. Man, C. Dong, Z. Cui, K. Xiao, Q. Yu, and X. Li, A Comparative Study of Primary and Secondary Passive Films Formed on AM355 Stainless STEEL in 0.1 M NaOH, Appl. Surf. Sci., 2018, 427, p 763–773

    CAS  Google Scholar 

  49. M. Islam, Alkaline-type boiler tube failures induced by phosphate water treatment, in: ASM International, Handbook of Case Histories in Failure Analysis, 1993, vol. 2, pp. 141–144

  50. A. Kumari, S.K. Das, and P.K. Srivastava, Impact of Boiler Water Chemistry on Waterside Tube Failures, Int. J. Innov. Res. Sci. Technol., 2015, 2, p 2349–6010

    Google Scholar 

  51. A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O. Ritchie, Hydrogen-Enhanced-Plasticity Mediated Decohesion for Hydrogen-Induced Intergranular and “Quasi-Cleavage” Fracture of Lath Martensitic Steels, J. Mech. Phys. Solids, 2018, 112, p 403–430

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. George.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharasi, N.S., Toppo, A., Paul, V.T. et al. Studies on the Susceptibility of Modified 9Cr-1Mo Steel to Stress Corrosion Cracking in Sodium Hydroxide Using Slow Strain Rate Testing Technique. J. of Materi Eng and Perform 29, 2172–2184 (2020). https://doi.org/10.1007/s11665-020-04766-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04766-1

Keywords

Navigation