Skip to main content
Log in

Solvothermal Synthesis and Growth of Covalent Organic Framework Electrochromic Film with Triphenylamine Active Unit

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) with reversible redox units and a conjugated molecular skeleton possess novel photoelectrochemical properties. In this work, tris(4-aminophenyl)amine and 4,4-biphenyldiformaldehyde were chosen to synthesize TABP-COF electrochromic film with triphenylamine (TPA) active unit by a solvothermal method in a Teflon-lined reactor. The growth process and reaction time optimization of the TABP-COF were studied. TABP-COF shows a self-assembly growth process from an array of nanosheets to nanospheres. Owing to the redox characteristics of TPA, the TABP-COF film exhibits reversible electrochromic behavior. With a solvothermal reaction time of 72 h, the TABP-COF-3 film exhibits the best electrochromic properties, including contrast of 0.483 and response time of 7.3 s/13.6 s. Considering the abundance of redox-active units that can be chosen, COF materials with different redox units and color changes can be designed for a variety of applications in the field of electrochromic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.X. Guo, Y. Zhang, S. Wang, L. Li, W. Wang, and Q. Sun, In-situ generation of Bi2S3 to construct WO3/BiVO4/Bi2S3 heterojunction for photocathodic protection of 304SS. J. Electroanal. Chem. 907, 116033 (2022).

    Article  CAS  Google Scholar 

  2. J.R. Platt, Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys. 34, 862 (1961).

    Article  CAS  Google Scholar 

  3. M. Rozman, L. Bostjanmatoh, F. Regina, S. Argyroula, and E. Urbanluksic, Flexible electrochromic tape using steel foil with WO3 thin film. Electrochim. Acta 330, 135329 (2020).

    Article  CAS  Google Scholar 

  4. W.E. Donath, J.C. Powers, W.R. Heller, and J. Kumamoto, Stark effect of phenol blue (electrochromism). J. Am. Chem. Soc. 86, 1004 (1964).

    Article  Google Scholar 

  5. E. Hopmann, A.Y. Elezzabi, W. Zhang, and H. Li, Nanostructured inorganic electrochromic materials for light applications. Nanophotonics 10, 825 (2020).

    Article  Google Scholar 

  6. D. Ma, and J. Wang, Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures. Sci. China: Chem. 60, 54 (2017).

    Article  CAS  Google Scholar 

  7. B.J. Holliday, Y. Liang, D. Strohecker, V. Lynch, and R.A. Jones, A thiophene-containing conductive metallopolymer using an Fe(II) Bis(terpyridine) core for electrochromic materials. ACS Appl. Mater. Interfaces 8, 34568 (2016).

    Article  PubMed  Google Scholar 

  8. F. Li, T.-C. Yen, and G.-S. Liou, Synthesis of high-performance electrochromic material for facile fabrication of truly black electrochromic devices. Electrochim. Acta 367, 137474 (2021).

    Article  CAS  Google Scholar 

  9. N. Huang, L.P. Zhai, D.E. Coupry, M.A. Addicoat, K. Okushita, K. Nishimura, T. Heine, and D.L. Jiang, Multiple-component covalent organic frameworks. Nat. Commun. 7, 12325 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. S. Ding, W. Wang, S. Ding, and W. Wang, Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. C.J. Kang, Z.Q. Zhang, A.K. Usadi, D.C. Calabro, L.S. Baugh, K.X. Yu, Y.X. Wang, and D. Zhao, Aggregated structures of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 7, 144 (2022).

    Google Scholar 

  12. Y.H. Zhu, S.Y. Jiang, X.C. Jing, and X. Feng, Electrically conductive 2D covalent organic frameworks. Trends Chem. 4, 128 (2021).

    Article  Google Scholar 

  13. L. Jianguo, W. Nan, and Ma. Longlong, Recent advances in covalent organic frameworks for catalysis. Chem.-Asian J. 15, 338 (2020).

    Article  Google Scholar 

  14. W.-K. Qin, C.-H. Tung, and L.-Z. Wu, Covalent organic framework and hydrogen-bonded organic framework for solar-driven photocatalysis. J. Mater. Chem. A 11, 12521 (2023).

    Article  CAS  Google Scholar 

  15. S. Das, J. Feng, and W. Wang, Covalent organic frameworks in separation. Annu. Rev. Chem. Biomol. Eng. 11, 112019 (2020).

    Article  Google Scholar 

  16. R. Iqbal, An electrochemically stable 2D covalent organic framework for high-performance organic supercapacitors. Chin. J. Polym. Sci. 38, 8 (2020).

    Article  Google Scholar 

  17. C.J. Yao, Z.Z. Wu, J. Xie, F. Yu, W. Guo, Z.C.J. Xu, S.Q. Zhang, and Q.C. Zhang, Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. Chemsuschem 13, 2457 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. M.S. Lohse, and T. Bein, Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 28, 1705553 (2018).

    Article  Google Scholar 

  19. L. Liu, D. Cui, S.R. Zhang, W. Xie, C. Yao, and Y.H. Xu, Integrated carbon nanotube and triazine-based covalent organic framework composites for high capacitance performance. Dalton Trans. 52, 2762 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. S.X. Xiong, Y.K. Zhang, J.J. Zhang, X.Q. Wang, J. Chu, R.L. Zhang, M. Gong, B.H. Wu, and G.Q. Liu, Solvothermal synthesis and enhanced electrochromic properties of covalent organic framework/functionalized carbon nanotubes composites electrochromic materials with anthraquinonoid active unit. Sol. Energy Mater. Sol. Cells 235, 111489 (2022).

    Article  CAS  Google Scholar 

  21. S.X. Xiong, Y.C. Wang, X.Q. Wang, J. Chu, R.L. Zhang, M. Gong, B.H. Wu, and Z. Li, Schiff base type conjugated organic framework nanofibers: solvothermal synthesis and electrochromic properties. Sol. Energy Mater. Sol. Cells 209, 110438 (2021).

    Article  Google Scholar 

  22. Q. Hao, Z.J. Li, C. Lu, B. Sun, Y.W. Zhong, L.J. Wan, and D. Wang, Oriented two-dimensional covalent organic framework films for near-infrared electrochromic application. J. Am. Chem. Soc. 141, 19831 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Q. Hao, B. Zhi-Juanbai, Y.-W. Xingzhong, and D. Li-Junwang, A covalent organic framework film for three-state near-infrared electrochromism and a molecular logic gate. Angewandte Chemie 60, 12498 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. R. Zheng, J. Zhang, C. Jia, Z. Wan, Y. Fan, X. Weng, J. Xie, and L. Deng, A novel self-healing electrochromic film based on a triphenylamine cross-linked polymer. Polym. Chem. 8, 6981 (2017).

    Article  CAS  Google Scholar 

  25. R.Z. Zheng, J.Q. Zhang, C.Y. Jia, Z.Q. Wan, Y.R. Fan, X.L. Weng, J.L. Xie, and L.J. Deng, Synthesis and characterization of stable electrochromic polyimides with quinolin-8-yloxy-substituted triphenylamine units. J. Electroanal. Chem. 801, 388 (2017).

    Article  Google Scholar 

  26. Y. Yan, N.W. Sun, X.T. Jia, X.C. Liu, C. Wang, and D.M. Chao, Electrochromic and electrofluorochromic behavior of novel polyurea bearing oligoaniline and triphenylamine units. Polymer 134, 1 (2018).

    Article  CAS  Google Scholar 

  27. S. Cai, S. Wang, D. Wei, H. Niu, W. Wang, and B. Xuduo, Multifunctional polyamides containing pyrrole unit with different triarylamine units owning electrochromic, electrofluorochromic and photoelectron conversion properties. J. Electroanal. Chem. 812, 132 (2018).

    Article  CAS  Google Scholar 

  28. L. Cao, I.C. Chen, X.W. Liu, Z. Li, Z.Y. Zhou, and Z.P. Lai, An ionic diode covalent organic framework membrane for efficient osmotic energy conversion. ACS Nano 16, 18910 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. H. Chen, X. Yuan, H. Wang, Yu. Hanbo, and L. Jiang, Nanostructured covalent organic frameworks with elevated crystallization for (electro)photocatalysis and energy storage devices. J. Mater. Sci. 56, 13875 (2021).

    Article  CAS  Google Scholar 

  30. S.B. Raoni, R.S. Gonçalves, A.B. de Oliveira, H.C. Sindra, B.S. Archanjo, M.E. Mendoza, L.S. Carneiro, C.D. Buarque, and P. Esteves, Heterogeneous catalysis by covalent organic frameworks (COF): Pd(OAc)2@COF-300 in cross-coupling reactions. Chemcatchem 8, 743 (2016).

    Article  Google Scholar 

  31. D.L. Ma, C. Qian, Q.Y. Qi, Z.R. Zhong, G.F. Jiang, and X. Zhao, Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Res. 14, 381 (2020).

    Article  Google Scholar 

  32. F. Lv, S. Xiong, J. Zhang, X. Wang, J. Chu, R. Zhang, M. Gong, B. Wu, G. Liu, and W. Luo, Enhanced electrochromic properties of 2,6-diaminoanthraquinone and 1,3,5-triformylresorcinol (DAAQ-TFP) covalent organic framework/functionalized graphene oxide composites containing anthraquinone active unit. Electrochim. Acta 398, 139301 (2021).

    Article  CAS  Google Scholar 

  33. X. Liu, Y. Wang, Y. Liu, L.I. Zonglong, L.I. Hui, Q. Fang, and Y. Jin, A covalent organic framework with high surface area for drug delivery. Chem. Res. Chin. Univ. 40, 1813 (2019).

    CAS  Google Scholar 

  34. Y. Ji, H.J. Niu, H.Y. Zhang, W.J. Wu, J.W. Cai, C. Wang, X.D. Bai, and W. Wang, Synthesis and electrochromic properties of polybismaleimides containing triphenylamine units. J. Solid State Electrochem. 18, 1537 (2014).

    Article  CAS  Google Scholar 

  35. R. Brooke, J. Edberg, D. Iandolo, M. Berggren, X. Crispin, and I. Engquist, Controlling the electrochromic properties of conductive polymers using UV-light. J. Mater. Chem. C. 6, 4663 (2018).

    Article  CAS  Google Scholar 

  36. N.B. Teran, and J.R. Reynolds, Discrete donor-acceptor conjugated systems in neutral and oxidized states: implications toward molecular design for high contrast electrochromics. Chem. Mater. 29, 1290 (2017).

    Article  CAS  Google Scholar 

  37. X.Y. Yang, L. Gong, K. Wang, S.H. Ma, W.P. Liu, B.W. Li, N. Li, H.H. Pan, X. Chen, H.L. Wang, J.M. Liu, and J.Z. Jiang, Ionothermal synthesis of fully conjugated covalent organic frameworks for high-capacity and ultrastable potassium-ion batteries. Adv. Mater. 34, e2207245 (2022).

    Article  PubMed  Google Scholar 

  38. G. Balamurugan, and J.S. Park, Metallo-terpyridine modified asymmetric viologen exhibiting remarkable optical memory effect in single-layered electrochromic devices. Electrochim. Acta 382, 138308 (2021).

    Article  CAS  Google Scholar 

  39. C.-P. Constantin, and M.-D. Damaceanu, A refreshing perspective on electrochromic materials: phenoxazine as an opportune moiety towards stable and efficient electrochromic polyimides. Chem. Eng. J. 465, 142883 (2023).

    Article  CAS  Google Scholar 

  40. W. Liu, X. Zhang, J. Liu, X. Ma, J. Zeng, P. Liu, and T. Xu, Electrochromic properties of organic-inorganic composite materials. J. Alloys Compd. 718, 379 (2017).

    Article  CAS  Google Scholar 

  41. A.A. Moya, Electrochemical impedance of ion-exchange membranes with interfacial charge transfer resistances. J. Phys. Chem. C 120, 6543 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (52073227) and Shaanxi Province Technological Innovation Guidance Special (2021QFY04-01) and for technical support provided by the Analytical Instrumentation Center of XUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanxin Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, S., Zhang, Y., Zhang, W. et al. Solvothermal Synthesis and Growth of Covalent Organic Framework Electrochromic Film with Triphenylamine Active Unit. J. Electron. Mater. 53, 2656–2665 (2024). https://doi.org/10.1007/s11664-024-10937-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-10937-w

Keywords

Navigation