Skip to main content
Log in

Study on the fabrication and photoelectrochemical performance of the F doped Ti/Co3O4 electrodes with n-type semiconductor characteristics

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, the Ti/Co3O4 electrodes with n-type semiconductor characteristics were fabricated by a typical hydrothermal process using F ion as dopant, and their morphology control was also performed by tailoring the hydrothermal temperature. The F doped Ti/Co3O4 electrodes could be used as photoanode to degrade anthraquinone dye (reactive Brilliant Blue KN-R), and showed excellent photoelectrocatalytic (PEC) activity. It is proposed that the fast ions and electron transportation, high oxygen evolution potential, lower resistance, large active area, and good electrolyte infiltration are responsible for the improved PEC activity of the F doped Ti/Co3O4 system. Nevertheless, the F doped Ti/Co3O4 electrode with divergent flower-like structure composed of needle nanowires exhibited highest PEC activity than that of other electrodes. It is noteworthy that the presence of electrostatic anti-barrier arises from an “ohmic” contact between the metal (Ti) and the semiconductor (Co3O4) is also an important factor for the higher PEC activity of the F doped Ti/Co3O4 electrodes. The work provides unique insight into the design of Co3O4 photoanode from a perspective of tailoring the ion doping and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Wang L, Ke F, Zhu J (2016) Metal-organic gel templated synthesis of magnetic porous carbon for highly efficient removal of organic dyes. Dalton Trans 45(11):4541–4547

    Article  CAS  PubMed  Google Scholar 

  2. Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340

    Article  CAS  PubMed  Google Scholar 

  3. Korbahti BK, Tanyolac A (2008) Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: optimization through response surface methodology. J Hazard Mater 151(2-3):422–431

    Article  CAS  PubMed  Google Scholar 

  4. Barredo-Damas S, Iborra-Clar MI, Bes-Pia A, Alcaina-Miranda MI, Mendoza-Roca JA, Iborra-Clar A (2005) Study of preozonation influence on the physical-chemical treatment of textile wastewater. Desalination 182(1-3):267–274

    Article  CAS  Google Scholar 

  5. Feng Y, Yang L, Liu J, Logan BE (2016) Electrochemical technologies for wastewater treatment and resource reclamation. Environ Sci: Wat Res Technol 2:800–831

    CAS  Google Scholar 

  6. Moussavi G, Mahmoudi M (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater 168(2-3):806–812

    Article  CAS  PubMed  Google Scholar 

  7. Gong D, Zhu J, Lu B (2016) RuO2@Co3O4 heterogeneous nanofibers: a high-performance electrode material for supercapacitors. RSC Adv 6(54):49173–49178

    Article  CAS  Google Scholar 

  8. He ZQ, Huang CX, Wang Q, Jiang Z, Chen JM, Song S (2011) Preparation of a praseodymium modified Ti/SnO2-Sb/PbO2 electrode and its application in the anodic degradation of the A1zo dye acid black 194. Environ Sci: Wat Res Technol 6:4341–4354

    CAS  Google Scholar 

  9. Polcaro AM, Palmas S, Renoldi F, Mascia M (1999) On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment. J Appl Electrochem 29(2):147–151

    Article  CAS  Google Scholar 

  10. Dai Q, Shen H, Xia Y, Chen F, Wang J, Chen J (2013) The application of a novel Ti/SnO2–Sb2O3/PTFE-La-Ce-β-PbO2 anode on the degradation of cationic gold yellow X-GL in sono-electrochemical oxidation system. Sep Purif Technol 104:9–16

    Article  CAS  Google Scholar 

  11. Haidar M, Dirany A, Sires I, Oturan N, Oturan MA (2013) Electrochemical degradation of the antibiotic sulfachloropyridazine by hydroxyl radicals generated at a BDD anode. Chemosphere 91(9):1304–1309

    Article  CAS  PubMed  Google Scholar 

  12. Dan YY, Zhang L, Chen LZ, Yue HJ, Lin HB, Lu HY (2014) Preparation of PbO2/nano-WO3 composite electrodeposition Ti substrate by composite electrodeposition and its oxygen evolution activity. Chem J Chin Univ 35:2632–2637

    CAS  Google Scholar 

  13. Geng R, Zhao GH, Liu MC, Lei YZ (2010) In situ ESR study of hydroxyl radical generation on a boron doped diamond film electrode surface. Acta Phys -Chim Sin 26:1493–1498

    CAS  Google Scholar 

  14. Velichenko AB, Girenko DV, Amadelli R, Danilov FI (1998) Effect of fluoride ions on electrodeposition of lead dioxide at the gold electrode. Russ JEl ectrochem 34:298–301

    CAS  Google Scholar 

  15. Velichenko AB, Girenko DV, Kovalyov SV, Gnatenko AN, Amadelli R, Danilov FI (1998) Lead dioxide electrodeposition and its application: influence of fluoride and iron ions. J Electroanal Chem 454(1-2):203–208

    Article  CAS  Google Scholar 

  16. Amadelli R, Armelao L, Velichenko AB, Nikolenko NV, Girenko DV, Kovalyov SV, Danilov FI (1999) Oxygen and ozone evolution at fluoride modified lead dioxide electrodes. Electrochim Acta 45:713–720

    Article  CAS  Google Scholar 

  17. Velichenko AB, Amadelli R, Baranova EA, Girenko DV, Danilov FI (2002) Electrodeposition of Co-doped lead dioxide and its physicochemical properties. J Electroanal Chem 527(1-2):56–64

    Article  CAS  Google Scholar 

  18. Mojumder N, Sarker S, Abbas SA, Tian Z, Subramanian V (2014) Photoassisted enhancement of the electrocatalytic oxidation of formic acid on platinized TiO2 nanotubes. ACS Appl Mater Interfaces 6(8):5585–5594

    Article  CAS  PubMed  Google Scholar 

  19. Akira F, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. Photochem Photobio C: Photochem Rev 1:1–21

    Article  Google Scholar 

  20. Vlyssides AG, Karlis PK, Rori N, Zorpas AA (2002) Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes. J Hazard Mater B 95(1-2):215–226

    Article  CAS  Google Scholar 

  21. Kong Y, Wang Z, Wang Y, Yuan J, Chen Z (2011) Degradation of methyl orange in artificial wastewater through electrochemical oxidation using exfoliated graphite electrode. New Carbon Mater 26(6):459–464

    Article  CAS  Google Scholar 

  22. Shen YM, Li F, Li SF, Liu DB, Fan LH, Zhang Y (2012) Electrochemically enhanced photocatalytic degradation of organic pollutant on β-PbO2 -TNT/Ti/TNT bifunctional electrode. J Electrochem Sci Technol 7:8702–8712

    CAS  Google Scholar 

  23. Li PQ, Zhao GH, Cui X, Zhang YG, Tang YT (2009) Constructing stake structured TiO2-NTs/Sb-doped SnO2 electrode simultaneously with high electrocatalytic and photocatalytic performance for complete mineralization of refractory aromatic acid. J Phys Chem C 113(6):2375–2383

    Article  CAS  Google Scholar 

  24. Li PQ, Zhao GH, Li MF, Cao TH, Cui X, Li DM (2012) Design and high efficient photoelectric-synergistic catalytic oxidation activity of 2D macroporous SnO2/1D TiO2 nanotubes. Appl Catal B Environ 111:578–585

    Google Scholar 

  25. He H, Zhang C, Liu T, Cao Y, Wang N, Guo Z (2016) Thermoelectric–photoelectric composite nanocables induced a larger efficiency in dye-sensitized solar cells. J Mater Chem A 4(24):9362–9369

    Article  CAS  Google Scholar 

  26. Raj BGS, Wu JJ, Asiri AM, Anandan S (2016) Hybrid SnO2-Co3O4 nanocubes prepared via CoSn(OH)6 intermediate through sonochemical route for energy storage applications. RSC Adv 6:33361–33368

    Article  CAS  Google Scholar 

  27. Huang X, Cao T, Liu M, Zhao G (2013) Synergistic photoelectrochemical synthesis of formate from CO2 on {121̅} hierarchical Co3O4. J Phys Chem C 117(50):26432–26440

    Article  CAS  Google Scholar 

  28. Lee CY, Lee K, Schmuki P (2013) Anodic formation of self-organized cobalt oxide nanoporous layer. Angew Chem Int Ed 52(7):2077–2081

    Article  CAS  Google Scholar 

  29. Lee CY, Su Z, Lee K, Tsuchiya H, Schmuki P (2014) Self-organized cobalt fluoride nanochannel layers used as a pseudocapacitor material. Chem Commun 50(53):7067–7070

    Article  CAS  Google Scholar 

  30. Li M, El-Kady MF, Hwang JY, Kowal MD, Marsh K, Wang H, Zhao Z, Kaner RB (2018) Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. Nano Res 11(5):2836–2846

    Article  CAS  Google Scholar 

  31. Liu X, Chen S, Yu J, Zhang W, Dai Y, Zhang S (2015) Ni-enhanced Co3O4 nanoarrays grown in situ on a Cu substrate as integrated anode materials for high-performance Li-ion batteries. RSC Adv 5:7388–7394

    Article  CAS  Google Scholar 

  32. Shi P, Dai X, Zheng H, Li D, Yao W, Hu C (2014) Synergistic catalysis of Co3O4 and graphene oxide on Co3O4/GO catalysts for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals. Chem Eng J 240:264–270

    Article  CAS  Google Scholar 

  33. Wu JB, Li ZG, Huang XH, Lin Y (2013) Porous Co3O4/NiO core/shell nanowire array with enhanced catalytic activity for methanol electro-oxidation. J Power Sources 224:1–5

    Article  CAS  Google Scholar 

  34. Zhao J, Zhu C, Lu J, Hu C, Peng S, Chen T (2014) Electro-catalytic degradation of bisphenol A with modified Co3O4/β-PbO2/Ti electrode. Electrochim Acta 118:169–175

    Article  CAS  Google Scholar 

  35. Fantini M, Torrian I (1986) The compositional and structural properties of sprayed SnO2: F thin films. Thin Solid Films 138(2):255–265

    Article  CAS  Google Scholar 

  36. zhao GH, Zhang YG, Lei YZ, Lv BY, Gao JX, Zhang YN, Li DM (2010) Fabrication and electrochemical treatment application of a novel lead dioxide anode with superhydrophobic surfaces, high oxygen evolution potential, and oxidation capability. Environ Technol 44:1754–1759

    Article  CAS  Google Scholar 

  37. Bhardwaj A, Gupta BK, Raza A, Sharma AK, Agnihotri OP (1981-1982) Fluorine-doped SnO2films for solar cell application. Sol Energ Mater Sol C 5:39–49

    CAS  Google Scholar 

  38. van der Pauw LJ (1958) A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res Rep 13:1–9

    Google Scholar 

  39. Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26(2):542–548

    Article  CAS  PubMed  Google Scholar 

  40. Sung HK, Oh SY, Park C, Kim Y (2013) Colorimetric detection of Co2+ ion using silver nanoparticles with spherical, plate, and rod shapes. Langmuir 29(28):8978–8982

    Article  CAS  PubMed  Google Scholar 

  41. Barreca D, Bekermann D, Comini E, Devi A, Fischer RA, Gasparotto A, Gavagnin M, Maccato C, Sada C, Sberveglieri G, Tondello E (2011) Plasma enhanced-CVD of undoped and fluorine-doped Co3O4 nanosystems for novel gas sensors. Sensors Actuators B Chem 160:79–86

    Article  CAS  Google Scholar 

  42. Gasparotto A, Barreca D, Bekermann D, Devi A, Fischer RA, Fornasiero P, Gombac V, Lebedev OI, Maccato C, Montini T, Tendeloo GV, Tondello E (2011) F-Doped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol. J Am Chem Soc 133(48):19362–19365

    Article  CAS  PubMed  Google Scholar 

  43. Kong DS, Lu WH, Feng YY, Bi SW (2009) Advances and some problems in electrocatalysis of DSA electrodes. Prog Chem 21:1107–1117

    CAS  Google Scholar 

  44. Harrington SP, Devine TM (2008) Analysis of electrodes displaying frequency dispersion in Mott-Schottky tests. J Electrochem Soc 155(8):C381–C386

    Article  CAS  Google Scholar 

  45. Wang Z, Yang CY, Lin TQ, Hao Y, Chen P, Wan DY, Xu FF, Huang FQ, Lin JH, Xie XM, Jiang MH (2013) Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ Sci 6(10):3007–3014

    Article  CAS  Google Scholar 

  46. García-Mota M, Vojvodic A, Metiu H, Man IC, Su HY, Rossmeisl J, Nørskov JK (2011) Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. ChemCatChem 3(10):1607–1611

    Article  CAS  Google Scholar 

  47. Roy N, Sohn Y, Leung KT, Pradhan D (2014) Engineered electronic states of transition metal doped TiO2 nanocrystals for low overpotential oxygen evolution reaction. J Phys Chem C 118(51):29499–29506

    Article  CAS  Google Scholar 

  48. Liu B, Chen HM, Liu C, Andrews SC, Hahn C, Yang P (2013) Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable over potential. J Am Chem Soc 135(27):9995–9998

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Xu L, He J, Zhang J (2014) Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim Acta 117:192–201

    Article  CAS  Google Scholar 

  50. Wang Y, Xia H, Lu L, Lin JY (2010) Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 4(3):1425–1432

    Article  CAS  PubMed  Google Scholar 

  51. Mai L, Tian X, Xu X, Chang L, Xu L (2014) Nanowire electrodes for electrochemical energy storage devices. Chem Rev 114(23):11828–11862

    Article  CAS  PubMed  Google Scholar 

  52. Li XL, Li XM, Yang WJ, Chen XH, Li WL, Luo BB, Wang KL (2014) Preparation of 3D PbO2 nanospheres@SnO2 nanowires/Ti electrode and its application in methyl orange degradation. Electrochim Acta 146:15–22

    Article  CAS  Google Scholar 

  53. Chen T, Li XW, Qiu CC, Zhu WC, Ma HY, Chen SH, Meng O (2014) Electrochemical sensing of glucose by carbon cloth-supported Co3O4/PbO2 core-shell nanorod arrays. Biosens Bioelectron 53:200–206

    Article  CAS  PubMed  Google Scholar 

  54. Wang GL, Cao DX, Yin CL, Gao YY, Yin JL, Cheng L (2009) Nickel foam supported-Co3O4 nanowire arrays for H2O2 electroreduction. Chem Mater 21(21):5112–5118

    Article  CAS  Google Scholar 

  55. He JF, Peng YH, Sun ZH, Cheng WR, Liu QH, Feng YJ, Jiang Y, Hu FC, Pan ZY, Bian Q, Wei SQ (2014) Realizing high water splitting activity on Co3O4 nanowire arrays under neutral environment. Electrochim Acta 119:64–71

    Article  CAS  Google Scholar 

  56. Amadelli R, Samiolo L, Battisti AD, Velichenko AB (2011) Electro-oxidation of some phenolic compounds by electrogenerated O3 and by direct electrolysis at PbO2 anodes. J Electrochem Soc 158:87–92

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21875026, 21878031), the Program for Liaoning Excellent Talents in University (LR2014013), the Natural Science Foundation of Liaoning Province (No. 20170520427), and the Science and Technology Foundation of Liaoning Province (No. 201602052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinghuan Fu or Zhihui Yu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Wang, X., Fu, Y. et al. Study on the fabrication and photoelectrochemical performance of the F doped Ti/Co3O4 electrodes with n-type semiconductor characteristics. J Solid State Electrochem 23, 1767–1777 (2019). https://doi.org/10.1007/s10008-019-04256-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04256-y

Keywords

Navigation