Skip to main content
Log in

Proposed Compositions in a Ni-Mn-Ga System for Magnetocaloric Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Magnetocaloric materials (MCM) have garnered significant attention within the research community, as they can minimize the use of harmful gases such as chlorofluorocarbons and hydrofluorocarbons, and provide eco-friendly refrigeration. Heusler alloys (Ni2MnGa) are known for their magnetocaloric effects, which make them useful as energy-efficient and eco-friendly refrigerating materials. Magnetocaloric properties depend significantly on the composition of these alloys. Ni-Mn-Ga is an interesting Heusler system which exhibits magnetocaloric properties. In the present study, we performed thermodynamic optimization of two sub-binaries of the Ni-Mn-Ga system, Mn-Ga and Ni-Ga, using the CALPHAD approach. Both binaries were combined with Mn-Ni to develop a self-consistent thermodynamic database for Ni-Mn-Ga. In order to resolve the existing experimental discrepancies in the Mn-Ga and Ni-Ga system, a few alloy compositions were prepared and analysed using differential thermal analysis. Finally, the developed thermodynamic database was used to calculate the T0 (K) or the martensite start temperature. The influence of varying Mn, Ni, and Ga concentrations on T0 (K) is discussed using the hybridization theory, and the current calculation results are compared with previous experiments in the literature. Lastly, a few compositions in the Mn-rich region are proposed which exhibit comparable or better magnetocaloric properties relative to the existing alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The raw data required to reproduce these finding will be made available as per request.

References

  1. Y. Dong, M. Coleman, and S.A. Miller, Greenhouse gas emissions from air conditioning and refrigeration service expansion in developing countries. Annu. Rev. Environ. Resour. 46(1), 59 (2021).

    Article  Google Scholar 

  2. P. Wikus, G. Burghart, and E. Figueroa-Feliciano, Optimum operating regimes of common paramagnetic refrigerants. Cryogenics (Guildf) 51(9), 555 (2011).

    Article  ADS  CAS  Google Scholar 

  3. K.G. Sandeman and S. Takei, In Handbook of Magnetism and Magnetic Materials (Cham: Springer International Publishing, 2021), p.1.

    Book  Google Scholar 

  4. N. Bloembergen and N.J. Poulis, On the nuclear magnetic resonance in an antiferromagnetic crystal. Physica 16(11–12), 915 (1950).

    Article  ADS  CAS  Google Scholar 

  5. T. Gottschall, A. Gràcia-Condal, M. Fries, A. Taubel, L. Pfeuffer, L. Mañosa, A. Planes, K.P. Skokov, and O. Gutfleisch, A multicaloric cooling cycle that exploits thermal hysteresis. Nat. Mater. 17(10), 929 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. C.R.H. Bahl and K.K. Nielsen, The effect of demagnetization on the magnetocaloric properties of gadolinium. J. Appl. Phys. 105(1), 013916 (2009).

    Article  ADS  Google Scholar 

  7. G.V. Brown, Magnetic heat pumping near room temperature. J. Appl. Phys. 47(8), 3673 (1976).

    Article  ADS  CAS  Google Scholar 

  8. K.H.J. Buschow and R.C. Sherwood, Magnetic properties and hydrogen absorption in rare-earth intermetallics of the type R Mn 2 and R 6 Mn 23. J. Appl. Phys. 48(11), 4643 (1977).

    Article  ADS  CAS  Google Scholar 

  9. F. Holtzberg, R.J. Gambino, and T.R. McGuire, New ferromagnetic 5: 4 compounds in the rare earth silicon and germanium systems. J. Phys. Chem. Solids 28(11), 2283 (1967).

    Article  ADS  CAS  Google Scholar 

  10. V.K. Pecharsky and K.A. Gschneidner, Phase relationships and crystallography in the pseudobinary system Gd5Si4·Gd5Ge4. J. Alloys Compd. 260(1–2), 98 (1997).

    Article  CAS  Google Scholar 

  11. M. Han, D.C. Jiles, J.E. Snyder, T.A. Lograsso, and D.L. Schlagel, Giant magnetostriction behavior at the Curie temperature of single crystal Gd5(Si0.5Ge0.5)4. J. Appl. Phys. 95(11), 6945 (2004).

    Article  ADS  CAS  Google Scholar 

  12. E.M. Levin, V.K. Pecharsky, and K.A. Gschneidner, Spontaneous generation of voltage in Gd5(SixGe4−x) during a first-order phase transition induced by temperature or magnetic field. Phys. Rev. B 63(17), 174110 (2001).

    Article  ADS  Google Scholar 

  13. N.H. Dung, Z.Q. Ou, L. Caron, L. Zhang, D.T.C. Thanh, G.A. de Wijs, R.A. de Groot, K.H.J. Buschow, and E. Brück, Mixed Magnetism for refrigeration and energy conversion. Adv. Energy Mater. 1(6), 1215 (2011).

    Article  CAS  Google Scholar 

  14. S. Fujieda, A. Fujita, K. Fukamichi, Y. Yamazaki, and Y. Iijima, Giant isotropic magnetostriction of itinerant-electron metamagnetic La(Fe0.88Si0.12)13Hy compounds. Appl. Phys. Lett. 79(5), 653 (2001).

    Article  ADS  CAS  Google Scholar 

  15. O.L. Baumfeld, Z. Gercsi, M. Krautz, O. Gutfleisch, and K.G. Sandeman, The dynamics of spontaneous hydrogen segregation in LaFe 13–x Si x H y. J. Appl. Phys. 115(20), 203905 (2014).

    Article  ADS  Google Scholar 

  16. F. Wang, Y.F. Chen, G.J. Wang, J.R. Sun, and B.G. Shen, Large magnetic entropy change and magnetic properties in la (Fe 1-xMnx)11.7Si1.3Hy compounds. Chinese Phys. 12(8), 911–998 (2003).

    Article  ADS  CAS  Google Scholar 

  17. M.P. Annaorazov, K.A. Asatryan, G. Myalikgulyev, S.A. Nikitin, A.M. Tishin, and A.L. Tyurin, Alloys of the FeRh system as a new class of working material for magnetic refrigerators. Cryogenics (Guildf) 32(10), 867 (1992).

    Article  ADS  CAS  Google Scholar 

  18. M. Manekar and S.B. Roy, Reproducible room temperature giant magnetocaloric effect in Fe-Rh. J. Phys. D Appl. Phys. 41(19), 192004 (2008).

    Article  ADS  Google Scholar 

  19. E. Stern-Taulats, T. Castán, A. Planes, L.H. Lewis, R. Barua, S. Pramanick, S. Majumdar, and L. Mañosa, Giant multicaloric response of bulk Fe49Rh51. Phys. Rev. B 95(10), 104424 (2017).

    Article  ADS  Google Scholar 

  20. E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, S. Pramanick, S. Majumdar, C. Frontera, and L. Mañosa, Barocaloric and magnetocaloric effects in Fe49Rh51. Phys. Rev. B 89(21), 214105 (2014).

    Article  ADS  Google Scholar 

  21. A. Planes, L. Mañosa, and M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter 21(23), 233201 (2009).

    Article  ADS  PubMed  Google Scholar 

  22. L. Pareti, M. Solzi, F. Albertini, and A. Paoluzi, Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni Mn Ga Heusler alloy. European Phys. J. B-Condens. Matter 32(3), 303 (2003).

    ADS  CAS  Google Scholar 

  23. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys.Nat. Mater. 4(6), 450 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. B. Dutta, A. Çakır, C. Giacobbe, A. Al-Zubi, T. Hickel, M. Acet, and J. Neugebauer, Ab initio prediction of martensitic and intermartensitic phase boundaries in Ni-Mn-Ga. Phys. Rev. Lett. 116(2), 025503 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Y.K. Fang, C.C. Yeh, C.W. Chang, W.C. Chang, M.G. Zhu, and W. Li, Large low-field magnetocaloric effect in MnCo0.95Ge1.14 alloy. Scr. Mater. 57(6), 453 (2007).

    Article  CAS  Google Scholar 

  26. N.T. Trung, V. Biharie, L. Zhang, L. Caron, K.H.J. Buschow, and E. Brück, From single-to double-first-order magnetic phase transition in magnetocaloric Mn1−xCrxCoGe compounds. Appl. Phys. Lett. 96(16), 162507 (2010).

    Article  ADS  Google Scholar 

  27. F. Hu, B. Shen, and J. Sun, Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy. Appl. Phys. Lett. 76(23), 3460 (2000).

    Article  ADS  CAS  Google Scholar 

  28. T. Ikeda, Y. Nosé, T. Korata, H. Numakura, and M. Koiwa, The homogeneity ranges of the L12-type intermetallic compounds Ni3Ga and Ni3Ge. J. Phase Equilibria 20(6), 626 (1999).

    Article  CAS  Google Scholar 

  29. C. Schmetterer, H. Flandorfer, C.L. Lengauer, J.-P. Bros, and H. Ipser, The system Ga–Ni: A new investigation of the Ga-rich part. Intermetallics (Barking) 18(2), 277 (2010).

    Article  CAS  Google Scholar 

  30. R. Ducher, R. Kainuma, and K. Ishida, Phase equilibria in the Ni-rich portion of the Ni–Ga binary system. Intermetallics (Barking) 15(2), 148 (2007).

    Article  CAS  Google Scholar 

  31. L. Hao and W. Xiong, An evaluation of the Mn–Ga system: Phase diagram, crystal structure, magnetism, and thermodynamic properties. Calphad 68, 101722 (2020).

    Article  CAS  Google Scholar 

  32. W.X. Yuan, Z.Y. Qiao, H. Ipser, and G. Eriksson, Thermodynamic assessment of the Ni-Ga system. J. Phase Equilibria Diffus. 25(1), 68 (2004).

    Article  Google Scholar 

  33. Z.-M. Cao, X. Shi, W. Xie, I. Ohnuma, K. Ishida, and Z.-Y. Qiao, Thermodynamic reassessment of Ni–Ga binary system. Rare Met. 34(12), 864 (2015).

    Article  CAS  Google Scholar 

  34. M.E. Wood and W.H. Potter, General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity. Cryogenics (Guildf) 25(12), 667 (1985).

    Article  ADS  CAS  Google Scholar 

  35. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault, The modified quasichemical model I—Binary solutions. Metall. and Mater. Trans. B. 31(4), 651 (2000).

    Article  ADS  Google Scholar 

  36. A.D. Pelton and P. Chartrand, The modified quasi-chemical model: Part II. Multicomponent solutions. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 32(6), 1355 (2001).

    Article  ADS  Google Scholar 

  37. M. Hillert, The compound energy formalism. J. Alloys Compd. 320(2), 161 (2001).

    Article  CAS  Google Scholar 

  38. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, FactSage thermochemical software and databases. Calphad 26(2), 189 (2002).

    Article  CAS  Google Scholar 

  39. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende, FactSage thermochemical software and databases, 2010–2016. Calphad 54, 35 (2016).

    Article  CAS  Google Scholar 

  40. A.T. Dinsdale, SGTE Data for Pure Elements. Calphad 15(4), 317 (1991).

    Article  CAS  Google Scholar 

  41. III. Investigations of the specific heat of solid bodies. Philos Trans R Soc Lond 155, 71 (1865).

  42. H. Masumoto, K. Watanabe, and M. Mitera, On the DO22-type alloys in the Mn-Ga system and their magnetic properties. Nippon Kinzoku Gakkaishi 42, 474 (1978).

    CAS  Google Scholar 

  43. H. Niida, T. Hori, H. Onodera, Y. Yamaguchi, and Y. Nakagawa, Magnetization and coercivity of Mn3δGa alloys with a D 022-type structure. J. Appl. Phys. 79(8), 5946 (1996).

    Article  ADS  CAS  Google Scholar 

  44. J. Kübler, Ab initio estimates of the Curie temperature for magnetic compounds. J. Phys. Condens. Matter 18(43), 9795 (2006).

    Article  ADS  Google Scholar 

  45. S. Wurmehl, H.C. Kandpal, G.H. Fecher, and C. Felser, Valence electron rules for prediction of half-metallic compensated-ferrimagnetic behaviour of Heusler compounds with complete spin polarization. J. Phys. Condens. Matter 18(27), 6171 (2006).

    Article  ADS  CAS  Google Scholar 

  46. K. Schubert, T.R. Anantharaman, H.O.K. Ata, H.G. Meissner, M.P. Tzschke, W. Rossteutscher, and E. Stolz, Einige strukturelle Ergebnisse an metallischen Phasen (6). Naturwissenschaften 47(22), 512 (1960).

    Article  ADS  CAS  Google Scholar 

  47. I. Tsuboya and M. Sugihara, Magnetic properties of ζ phase in Mn-Ga system. J. Physical Soc. Japan 18(7), 1096 (1963).

    Article  ADS  Google Scholar 

  48. E. Krén and G. Kádár, Neutron diffraction study of Mn3Ga. Solid State Commun. 8(20), 1653 (1970).

    Article  ADS  Google Scholar 

  49. P. Kharel, Y. Huh, N. Al-Aqtash, V.R. Shah, R.F. Sabirianov, R. Skomski, and D.J. Sellmyer, Structural and magnetic transitions in cubic Mn3Ga. J. Phys. Condens. Matter 26(12), 126001 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. K. Minakuchi, R.Y. Umetsu, K. Ishida, and R. Kainuma, Phase equilibria in the Mn-rich portion of Mn–Ga binary system. J. Alloys Compd. 537, 332 (2012).

    Article  CAS  Google Scholar 

  51. A. Sakuma, Electronic structures and magnetism of CuAu-type MnNi and MnGa. J. Magn. Magn. Mater. 187(1), 105 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  52. Z. Yang, J. Li, D. Wang, K. Zhang, and X. Xie, Electronic structure and magnetic properties of δ-MnGa. J. Magn. Magn. Mater. 182(3), 369 (1998).

    Article  ADS  CAS  Google Scholar 

  53. H.G. Meissner, K. Schubert, and T.R. Anantharaman, The constitution and structure of manganese-gallium alloys. Proc. Indian Acad. Sci.-Sect. A 61(6), 340 (1965).

    Article  CAS  Google Scholar 

  54. P. Tozman, J.M.D. Coey, and Z. Gercsi, Structure and magnetic order in Mn8Ga5. Acta Mater. 113, 147 (2016).

    Article  ADS  CAS  Google Scholar 

  55. I. Tsuboya and M. Sugihara, The magnetic properties of ε phase in Mn–Ga system. J. Physical Soc. Japan 18(1), 143 (1963).

    Article  ADS  CAS  Google Scholar 

  56. I. Tsubuya and M. Sugihara, Magnetic properties of Mn-Ga alloys with a high coercive force. J. Physical Soc. Japan 20(1), 170 (1965).

    Article  ADS  Google Scholar 

  57. E. Wachtel and K.J. Nier, Magnetische Untersuchung des Systems Mangan-Gallium im festen und flüssigen Zustand. Int. J. Mater. Res. 56(11), 779 (1965).

    Article  CAS  Google Scholar 

  58. T.A. Bither and W.H. Cloud, Magnetic tetragonal δ phase in the Mn–Ga binary. J. Appl. Phys. 36(4), 1501 (1965).

    Article  ADS  CAS  Google Scholar 

  59. C. Guo and Z. Du, Thermodynamic optimization of the Mn–Ni system. Intermetallics (Barking) 13(5), 525 (2005).

    Article  CAS  Google Scholar 

  60. X. Lu, J. Liang, T. Shi, and M. Zhou, A x-ray investigation of the manganese-gallium system. Acta Physica Sinica 29(4), 469 (1980).

    Article  CAS  Google Scholar 

  61. O. Gourdon and G.J. Miller, Reinvestigation of the GaMn structure and theoretical studies of its electronic and magnetic properties. J. Solid State Chem. 173(1), 137 (2003).

    Article  ADS  CAS  Google Scholar 

  62. U. Häussermann, P. Viklund, M. Boström, R. Norrestam, and S.I. Simak, Bonding and physical properties of Hume-Rothery compounds with the PtHg4 structure. Phys. Rev. B 63(12), 125118 (2001).

    Article  ADS  Google Scholar 

  63. S.-H. Kim, M. Boström, and D.-K. Seo, Two-Dimensional superdegeneracy and structure−magnetism correlations in strong ferromagnet, Mn2Ga5. J. Am. Chem. Soc. 130(4), 1384 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. K. Donishi, K. Morii, and Y. Nakayama, Formation of Mn2Ga5 Phase in Amorphous Mn30Ga70 Thin Films. Mater. Trans. JIM 30(6), 455 (1989).

    Article  CAS  Google Scholar 

  65. D. Sedmidubský, J. Leitner, and Z. Sofer, Phase relations in the Ga–Mn–N system. J. Alloys Compd. 452(1), 105 (2008).

    Article  Google Scholar 

  66. A.R. Miedema, P.F. de Châtel, and F.R. de Boer, Cohesion in alloys—Fundamentals of a semi-empirical model. Physica B+C 100(1), 1 (1980).

    Article  ADS  CAS  Google Scholar 

  67. J. Winterlik, B. Balke, G.H. Fecher, C. Felser, M.C.M. Alves, F. Bernardi, and J. Morais, Structural, electronic, and magnetic properties of tetragonal Mn3−xGa: Experiments and first-principles calculations. Phys. Rev. B 77(5), 054406 (2008).

    Article  ADS  Google Scholar 

  68. E. Hellner, Das System nickel-gallium. Int. J. Mater. Res. 41(12), 480 (1950).

    Article  CAS  Google Scholar 

  69. W.B. Pearson, A nickel-gallium superlattice (Ni3Ga). Nature 173(4399), 364 (1954).

    Article  ADS  CAS  Google Scholar 

  70. W.B. Pearson and D.M. Rimek, THE CONSTITUTION OF NICKEL–GALLIUM ALLOYS IN THE REGION 0–35 ATOMIC% GALLIUM. Can. J. Phys. 35(10), 1228 (1957).

    Article  ADS  CAS  Google Scholar 

  71. P. Feschotte and P. Eggimann, Les systemes binaires cobalt-gallium et nickel-gallium-étude comparée. J. Less Common Metals 63(1), 15 (1979).

    Article  CAS  Google Scholar 

  72. H. Ipser, A. Mikula, and W. Schuster, Lattice parameter and melting behavior of the ternary B2-phase in the Co-Ga-Ni system. Monatshefte for Chemie Chemical Monthly 120(4), 283 (1989).

    Article  CAS  Google Scholar 

  73. K. Micke, S.L. Markovski, H. Ipser, and F.J.J. van Loo, The nickel-rich part of the Ga-Ni phase diagram and the corresponding phase relations in the ternary Ga-Ni-Sb system. Ber. Bunsenges. Phys. Chem. 102(9), 1240 (1998).

    Article  CAS  Google Scholar 

  74. S. Martosudirjo and J.N. Pratt, Enthalpies of formation of solid nickel-gallium and nickel-germanium alloys. Thermochim. Acta 17(2), 183 (1976).

    Article  CAS  Google Scholar 

  75. H. Jacobi, D. Stöckel, and H.L. Lukas, Thermodynamik und Fehlordnung der ternären ß-Phase (Ni, Cu)Ga / Thermodynamics and Defect Structure in the Ternary /-Phase (Ni, Cu)Ga. Int. J. Mater. Res. 62(4), 305 (1971).

    Article  CAS  Google Scholar 

  76. B. Predel, W. Vogelbein, and U. Schallner, Thermodynamische untersuchung des systems nickel-gallium. Thermochim. Acta 12(4), 367 (1975).

    Article  CAS  Google Scholar 

  77. J.N. Pratt and J.M. Bird, Solid electrolyte cell studies of solid nickel-gallium alloys. J. Phase Equilibria 14(4), 465 (1993).

    Article  CAS  Google Scholar 

  78. I. Katayama, S. Igi, and Z. Kozuka, Thermodynamic study of solid Ni–Ga Alloys by E.M.F. Measurements using the solid electrolyte. Trans. Japan Inst. of Metals 15(6), 447 (1974).

    Article  Google Scholar 

  79. A.U. Seybolt, Activity of gallium in NiGa and associated gallium-gallium oxide equilibria. J. Electrochem. Soc. 111(6), 697 (1964).

    Article  ADS  CAS  Google Scholar 

  80. A. Mikula, W. Schuster, Y.A. Chang, and E.-T. Henig, Thermodynamic properties of ternary B2-Phases with triple-defects. Int. J. Mater. Res. 78(3), 172 (1987).

    Article  CAS  Google Scholar 

  81. S.V. Meschel and O.J. Kleppa, Standard enthalpies of formation of some 3d transition metal gallides by high temperature direct synthesis calorimetry. J. Alloys Compd. 290(1–2), 150 (1999).

    Article  CAS  Google Scholar 

  82. W. Yuan, O. Diwald, A. Mikula, and H. Ipser, Thermodynamic properties and nonstoichiometry in the intermetallic compound Ni3Ga. Z. Met. 91(6), 448 (2000).

    CAS  Google Scholar 

  83. A. Kushida, T. Ikeda, H. Numakura, and M. Koiwa, Thermodynamic Activity of Ga in Ni3Ga. J. Jpn. Inst. Met. 64(3), 202 (2000).

    Article  CAS  Google Scholar 

  84. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 1(1), 011002 (2013).

    Article  ADS  Google Scholar 

  85. X. Zhou, W. Li, H.P. Kunkel, and G. Williams, Influence of the nature of the magnetic phase transition on the associated magnetocaloric effect in the Ni–Mn–Ga system. J. Magn. Magn. Mater. 293(3), 854 (2005).

    Article  ADS  CAS  Google Scholar 

  86. X. Zhou, H. Kunkel, G. Williams, S. Zhang, and X. Desheng, Phase transitions and the magnetocaloric effect in Mn rich Ni–Mn–Ga Heusler alloys. J. Magn. Magn. Mater. 305(2), 372 (2006).

    Article  ADS  CAS  Google Scholar 

  87. J. Marcos, L. Mañosa, A. Planes, F. Casanova, X. Batlle, and A. Labarta, Multiscale origin of the magnetocaloric effect in Ni-Mn-Ga shape-memory alloys. Phys. Rev. B 68(9), 094401 (2003).

    Article  ADS  Google Scholar 

  88. M. Pasquale, C.P. Sasso, L.H. Lewis, L. Giudici, T. Lograsso, and D. Schlagel, Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals. Phys. Rev. B 72(9), 094435 (2005).

    Article  ADS  Google Scholar 

  89. X. Zhou, W. Li, H.P. Kunkel, G. Williams, and S. Zhang, Relationship between the magnetocaloric effect and sequential magnetic phase transitions in Ni-Mn-Ga alloys. J. Appl. Phys. 97(10), 10M515 (2005).

    Article  Google Scholar 

  90. F. Albertini, F. Canepa, S. Cirafici, E.A. Franceschi, M. Napoletano, A. Paoluzi, L. Pareti, and M. Solzi, Composition dependence of magnetic and magnetothermal properties of Ni–Mn–Ga shape memory alloys. J. Magn. Magn. Mater. 272–276, 2111 (2004).

    Article  ADS  Google Scholar 

  91. F. Albertini, A. Paoluzi, L. Pareti, M. Solzi, L. Righi, E. Villa, S. Besseghini, and F. Passaretti, Phase transitions and magnetic entropy change in Mn-rich Ni2MnGa alloys. J. Appl. Phys. 100(2), 023908 (2006).

    Article  ADS  Google Scholar 

  92. M. Khan, S. Stadler, J. Craig, J. Mitchell, and N. Ali, The overlap of first-and second-order phase transitions and related magnetic entropy changes in Ni$_2 + x$Mn$_1-x$Ga Heusler alloys. IEEE Trans. Magn. 42(10), 3108 (2006).

    Article  ADS  CAS  Google Scholar 

  93. M. Pasquale, C.P. Sasso, and L.H. Lewis, Magnetic entropy in Ni2MnGa single crystals. J. Appl. Phys. 95(11), 6918 (2004).

    Article  ADS  CAS  Google Scholar 

  94. I. Babita, M.M. Raja, R. Gopalan, V. Chandrasekaran, and S. Ram, Phase transformation and magnetic properties in Ni–Mn–Ga Heusler alloys. J. Alloys Compd. 432(1–2), 23 (2007).

    Article  CAS  Google Scholar 

  95. S. Roy, E. Blackburn, S.M. Valvidares, M.R. Fitzsimmons, S.C. Vogel, M. Khan, I. Dubenko, S. Stadler, N. Ali, S.K. Sinha, and J.B. Kortright, Delocalization and hybridization enhance the magnetocaloric effect in Cu-doped Ni2MnGa. Phys. Rev. B 79(23), 235127 (2009).

    Article  ADS  Google Scholar 

  96. G.J. Li, E.K. Liu, H.G. Zhang, Y.J. Zhang, G.Z. Xu, H.Z. Luo, H.W. Zhang, W.H. Wang, and G.H. Wu, Role of covalent hybridization in the martensitic structure and magnetic properties of shape-memory alloys: The case of Ni50Mn5+xGa35-xCu10. Appl. Phys. Lett. 102(6), 062407 (2013).

    Article  ADS  Google Scholar 

  97. G.D. Liu, X.F. Dai, S.Y. Yu, Z.Y. Zhu, J.L. Chen, G.H. Wu, H. Zhu, and J.Q. Xiao, Physical and electronic structure and magnetism of Mn2NiGa : Experiment and density-functional theory calculations. Phys. Rev. B 74(5), 054435 (2006).

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

NT: Investigation, methodology, writing—original draft. VP: Investigation, methodology. SD: Investigation. MP: Conceptualization, supervision, writing-review & editing.

Corresponding author

Correspondence to Manas Paliwal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, N., Pal, V., Das, S. et al. Proposed Compositions in a Ni-Mn-Ga System for Magnetocaloric Applications. J. Electron. Mater. 53, 1773–1795 (2024). https://doi.org/10.1007/s11664-023-10882-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10882-0

Keywords

Navigation