Skip to main content
Log in

Solid electrolyte cell studies of solid nickel-gallium alloys

  • Published:
Journal of Phase Equilibria

Abstract

Reversible galvanic cells employing ZrO2-CaO solid electrolytes and either Pt/O2 (air) or Ni/NiO reference electrodes were used to measure thermodynamic properties of solid Ni-Ga alloys at temperatures between 873 and 1100 K. Activities, partial Gibbs energies, and integral Gibbs energies, entropies, and enthalpies have been obtained for the a (fcc) solid solution and for the intermediate phases—Ni3Ga, Ni5Ga3, Ni3Ga2, Ni13Ga9, NiGa, and Ni2Ga3. The system is characterized by negative deviations from ideality, exothermic enthalpies, and negative entropies of formation. An analysis of the latter in terms of configurational, electronic, vibrational, dilatational, and magnetic contributions is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Cited References

  1. F.A. Lindemann,Phys. Z.,11, 609 (1910).

    Google Scholar 

  2. F. Weibke and O. Kubaschewski,Thermochemistry of Alloying, Springer, Berlin (1943).

    Google Scholar 

  3. E. Hellner,Z. Metallkd.,41, 480 (1950).

    Google Scholar 

  4. O. Kubaschewski and E.L1. Evans,Metallurgical Thermo-chemistry, 1sted., Butterworth, London (1951).

    Google Scholar 

  5. J. H.vanVleck,.Rev. Mod. Phys.,25, 221 (1952).

    Google Scholar 

  6. C. Wagner,Thermodynamics of Alloys, Addison-Wesley, New York (1952).

    Google Scholar 

  7. A. Glassner,ANLReportNo. 5750(1957).

  8. K.J. Tauer and R. Weiss,J. Phys. Chem. Solids, 2, 237 (1957).

    Article  ADS  Google Scholar 

  9. J. Crangle and M J. C. Martin,Philos. Mag.,4, 1006 ( 1959).

    Article  ADS  Google Scholar 

  10. Landolt-Bornstein Tables, 6th ed., Springer, Heidelberg, 2(4), 747,749(1961).

  11. L. Kaufman,Trans. Metall. Soc. AIME, 244, 1006 (1962).

    Google Scholar 

  12. E.V. Clougherty and L. Kaufman,Acta Metall., 11, 1043 (1963).

    Article  Google Scholar 

  13. K.P. Gupta, C. H. Cheng, and P. A. Beck,Phys. Rev.,133, 203 (1964).

    Article  ADS  Google Scholar 

  14. A.U. Seyboltand J. H. Westbrook,Acta Metall., 12, 449 (1964).

    Article  Google Scholar 

  15. A.U. Seybolt,J. Electrochem. Soc.,111, 697 (1964).

    Article  Google Scholar 

  16. M. Dixon, F.E. Hoare, and T. M. Holden,Proc. R. Soc. A, 303, 339 (1968).

    Article  ADS  Google Scholar 

  17. S. Bhan and K. Schubert,J. Less-Common Met.,17, 73 (1969).

    Article  Google Scholar 

  18. E.R. de Boer, C. J. Schinkel, L. Biesterbos, and S. Proost,J. Appl. Phys., 40, 1049 (1969).

    Article  ADS  Google Scholar 

  19. M. Ellner, S. Bhan, and K. Schubert,J. Less-Common Met 19 245 (1969).

    Article  Google Scholar 

  20. M. Ellner, K.J. Best, H. Jacobi, and K. Schubert,J. Less-Common Met.,79, 294 (1969).

    Article  Google Scholar 

  21. A.W. Bryant, W.G. Bugden, and J. N. Pratt,Acta Metall., 18, 101 (1970).

    Article  Google Scholar 

  22. L.A. PugIiese and G. R. Fitterer,Metall. Trans.,1,1997(1970).

  23. B. Darby, KM. Myles, and J. N. Pratt,Acto Metall.,19, 7 (1971).

    Article  Google Scholar 

  24. H. Jacobi, D. Stockel, H.L. Lukas,Z. Metallkd.,62, 305 (1971).

    Google Scholar 

  25. A. W. Bryant and J. N. Pratt, Proc. Colloque Int., CNRS, No. 201, Thermochemie, Marseille (1972).

  26. W. de Dood and P.F. de Chatel,J. Phys. F, Met. Phys.,3, 1039 (1973).

    Article  ADS  Google Scholar 

  27. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley,Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, OH (1973).

    Google Scholar 

  28. I. Katayama and Z. Kozuka, Tech. Rep. Osaka Univ.,23, 411 (1973).

    Google Scholar 

  29. J. N. Pratt, J. M. Bird, and S. Martosudirjo, Final Technical Report, United States Department of the Army, Contract No. DAJA37-73-C-3034(1973).

  30. I. Katayama, S. Igi, and Z. Kozuka,Trans. Jpn. Inst. Met.,15, 447 (1974).

    Article  Google Scholar 

  31. J.M. Bird, A.W. Bryant, and J.N. Pratt,J.Chem. Thermodyn., 7, 577 (1975).

    Article  Google Scholar 

  32. S. Martosudirjo and J.N. Pratt,Thermochim. Acta., 17, 183 (1976).

    Article  Google Scholar 

  33. J. Neumann, Y.A. Chang, and C.M. Lee,Acta Metall., 24, 593 (1976).

    Article  Google Scholar 

  34. T.J. Anderson and L.F. Donaghey,J.Chem. Thermodyn.,9, 603 (1977).

    Article  Google Scholar 

  35. M. Ellner,J. Less-Common Met. 60, p 15 (1978).

    Article  Google Scholar 

  36. P. Feschotte and P. Eggimann,J.Less-Common Met.,63, 15 (1979).

    Article  Google Scholar 

  37. Nazeer Ahmad and J. N. Pratt,Thermochim. Acta., 45, 139 (1981).

    Article  Google Scholar 

  38. H. ComertandJ.N. Pratt,Thermochim. Acto, 59, 267 (1982).

    Article  Google Scholar 

  39. H. Comertand J.N. Pratt,Thermochim. Acto, 84, 273 (1985).

    Article  Google Scholar 

  40. A. Mikula, W. Schuster, Y.A. Chang, and E.T. Henig,Z. Metallkd.,78, 172 (1981).

    Google Scholar 

  41. R. Guerinand A. Guivarc’h,J. Appl. Phys.,66, 2122 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratt, J.N., Bird, J.M. Solid electrolyte cell studies of solid nickel-gallium alloys. JPE 14, 465–472 (1993). https://doi.org/10.1007/BF02671965

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02671965

Keywords

Navigation