Skip to main content
Log in

First-Principles Approach to Elucidating Significant Rectification Ratios in Oppositely Charged Dipeptides

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electron transport properties of shorter peptides (i.e., dipeptides) consisting of oppositely charged amino acids have paved the way for the design of miniaturized molecular devices. In this context, we investigated two different dipeptides, namely arginyl-aspartic and arginyl-glutamic, alternating between one positively charged (i.e., l-arginine) and two negatively charged (i.e., l-aspartic and l-glutamic) amino acids. These dipeptides are placed between Au, Ag and Cu electrodes to form a total of six individual molecular devices. Various transport parameters including conductance, HOMO-LUMO gap, dipole moment, current–voltage (I–V) characteristics, rectification ratio and negative differential resistance regimes are computed using density functional theory with non-equilibrium Green’s function (NEGF-DFT). We observe an exceptionally high rectification ratio of 197.2 with the Au-Arg-Asp-Au device, while the Au-Arg-Glu-Au device offers the most significant negative differential resistance (NDR) regime, with a peak-to-valley current ratio of 178.9. We focus on the standard electron exchange–correlation integration of the Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA) with the double-zeta double-polarized (DZDP) basis set. The conductance, transmission spectra, delocalization of significant frontier orbitals and their gap correlate well with the switching characteristics. The coupling between molecule and electrode predicts the range of I–V characteristics. These results reveal the significant role of dipeptides in future molecular electronic devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All the data generated or analysed during this study are included in this manuscript.

References

  1. N. Amdursky, D. Marchak, L. Sepunaru, I. Pecht, M. Sheves, and D. Cahen, Electronic transport via proteins. Adv. Mater. 26, 7142 (2014). https://doi.org/10.1002/ADMA.201402304.

    Article  CAS  Google Scholar 

  2. A. Marks, S. Griggs, N. Gasparini, and M. Moser, Organic electrochemical transistors: an emerging technology for biosensing. Adv. Mater. Interfaces 9, 2102039 (2022). https://doi.org/10.1002/ADMI.202102039.

    Article  CAS  Google Scholar 

  3. B. Kayser, J.A. Fereiro, R. Bhattacharyya, S.R. Cohen, A. Vilan, I. Pecht, M. Sheves, and D. Cahen, Solid-state electron transport via the protein Azurin is temperature-independent down to 4 K. J. Phys. Chem. Lett. 11, 144 (2020). https://doi.org/10.1021/ACS.JPCLETT.9B03120/SUPPL_FILE/JZ9B03120_SI_001.PDF.

    Article  CAS  Google Scholar 

  4. E.D. Mentovich, I. Kalifa, A. Tsukernik, A. Caster, N. Rosenberg-Shraga, H. Marom, M. Gozin, and S. Richter, Multipeak negative-differential-resistance molecular device. Small 4, 55 (2008). https://doi.org/10.1002/smll.200700372.

    Article  CAS  Google Scholar 

  5. Y. Zhang, Y. Sun, Z. Liu, F. Xu, K. Cui, Y. Shi, Z. Wen, and Z. Li, Au nanocages for highly sensitive and selective detection of H2O2. J. Electroanal. Chem. 656, 23 (2011). https://doi.org/10.1016/J.JELECHEM.2011.01.037.

    Article  CAS  Google Scholar 

  6. F. Huerta, E. Morallón, F. Cases, A. Rodes, J.L. Vázquez, and A. Aldaz, Electrochemical behaviour of amino acids on Pt(h, k, l): a voltammetric and in situ FTIR study. Part 1. Glycine on Pt(111). J. Electroanal. Chem. 421, 179 (1997). https://doi.org/10.1016/S0022-0728(96)04820-6.

    Article  CAS  Google Scholar 

  7. D. Wyrzykowski, B. Pilarski, L. Chmurzyński, and J. Makowska, Acidic-basic properties of arginine-rich peptide fragments derived from the human Pin1 protein. J. Mol. Liq. 312, 113379 (2020). https://doi.org/10.1016/J.MOLLIQ.2020.113379.

    Article  CAS  Google Scholar 

  8. S.S. Isied, M.Y. Ogawa, and J.F. Wishart, Peptide-mediated intramolecular electron transfer: long-range distance dependence. Chem. Rev. 92, 381 (1992). https://doi.org/10.1021/cr00011a002.

    Article  CAS  Google Scholar 

  9. X. Jiang, C.H. Yu, M. Cao, S.Q. Newton, E.F. Paulus, and L. Schäfer, ø/ψ-Torsional dependence of peptide backbone bond-lengths and bond-angles: comparison of crystallographic and calculated parameters. J. Mol. Struct. 403, 83 (1997). https://doi.org/10.1016/S0022-2860(96)09390-8.

    Article  CAS  Google Scholar 

  10. Upma and M.L. Verma, First principles approach to study the structural, electronic and transport properties of dimer chitosan with graphene electrodes. J. Electron. Mater. 48, 4007 (2019). https://doi.org/10.1007/S11664-019-07163-0/metrics.

    Article  CAS  Google Scholar 

  11. G. Sikri and R.S. Sawhney, (2022) Dipeptide constituting oppositely charged amino acids as molecular rectifier. In: 2022 IEEE Glob. Conf. Comput. Power Commun. Technol., 1, https://doi.org/10.1109/globconpt57482.2022.9938256.

  12. A. Hazim, H.M. Abduljalil, and A. Hashim, Structural, spectroscopic, electronic and optical properties of novel platinum doped (PMMA/ZrO2) and (PMMA/Al2O3) nanocomposites for electronics devices. Trans. Electr. Electron. Mater. 21, 550 (2020). https://doi.org/10.1007/S42341-020-00210-2/metrics.

    Article  Google Scholar 

  13. D.M. Close, Calculated vertical ionization energies of the common α-amino acids in the gas phase and in solution. J. Phys. Chem. A 115, 2900 (2011). https://doi.org/10.1021/jp200503z.

    Article  CAS  Google Scholar 

  14. D. Dehareng and G. Dive, Vertical ionization energies of α-L-amino acids as a function of their conformation: an Ab initio study. Int. J. Mol. Sci. 5, 301 (2004). https://doi.org/10.3390/I5110301.

    Article  CAS  Google Scholar 

  15. K. Kitagawa, T. Morita, M. Kawasaki, and S. Kimura, Electric properties of self-assembled monolayers of helical peptides by scanning tunneling spectroscopy. J. Polym. Sci. Part A Polym. Chem. 41, 3493 (2003). https://doi.org/10.1002/POLA.10833.

    Article  CAS  Google Scholar 

  16. R.M. Metzger, B. Chen, U. Höpfner, M.V. Lakshmikantham, D. Vuillaume, T. Kawai, X. Wu, H. Tachibana, T.V. Hughes, H. Sakurai, J.W. Baldwin, C. Hosch, M.P. Cava, L. Brehmer, and G.J. Ashwell, Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J. Am. Chem. Soc. 119, 10455 (1997). https://doi.org/10.1021/JA971811E.

    Article  CAS  Google Scholar 

  17. J. Lara-Popoca, H.S. Thoke, R.P. Stock, E. Rudino-Pinera, and L.A. Bagatolli, Inductive effects in amino acids and peptides: Ionization constants and tryptophan fluorescence. Biochem. Biophys. Rep. 24, 100802 (2020). https://doi.org/10.1016/J.BBREP.2020.100802.

    Article  Google Scholar 

  18. K. Kitagawa, T. Morita, and S. Kimura, Molecular rectification of a helical peptide with a redox group in the metal-molecule-metal junction. J. Phys. Chem. B 109, 13906 (2005). https://doi.org/10.1021/jp050642e.

    Article  CAS  Google Scholar 

  19. R. Rinaldi, A. Biasco, G. Maruccio, R. Cingolani, D. Alliata, L. Andolfi, P. Facci, F. De Rienzo, R. Di Felice, and E. Molinari, Solid state molecular rectifier based on self organized metalloproteins. Adv. Mater. 14, 1453 (2002). https://doi.org/10.1002/1521-4095(20021016)14:20%3c1453::AID-ADMA1453%3e3.0.CO;2-C.

    Article  CAS  Google Scholar 

  20. R. Rinaldi, A. Biasco, G. Maruccio, V. Arima, P. Visconti, R. Cingolani, P. Facci, F. De Rienzo, R. Di Felice, E. Molinari, MPh. Verbeet, and G.W. Canters, Electronic rectification in protein devices. Appl. Phys. Lett. 82, 472 (2003). https://doi.org/10.1063/1.1530748.

    Article  CAS  Google Scholar 

  21. C.T. Armstrong, P.E. Mason, J.L.R. Anderson, and C.E. Dempsey, Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels. Sci. Rep. 6, 1 (2016). https://doi.org/10.1038/srep21759.

    Article  CAS  Google Scholar 

  22. T. Kampmann, D.S. Mueller, A.E. Mark, P.R. Young, and B. Kobe, The role of histidine residues in Low-pH-mediated viral membrane fusion. Structure. 14, 1481 (2006). https://doi.org/10.1016/J.STR.2006.07.011.

    Article  CAS  Google Scholar 

  23. G. Sikri and R.S. Sawhney, First principle approach to elucidate transport properties through l-glutamic acid-based molecular devices using symmetrical electrodes. J. Mol. Model. 26, 74 (2020). https://doi.org/10.1007/S00894-020-4323-X.

    Article  CAS  Google Scholar 

  24. G. Sikri and R.S. Sawhney, Molecular electronics behaviour of l-aspartic acid using symmetrical metal electrodes. J. Mol. Model. 27, 335 (2021). https://doi.org/10.1007/S00894-021-04936-5.

    Article  CAS  Google Scholar 

  25. G. Sikri, R.S. Sawhney, and R. Kumar, Semi empirical evaluation of shortest amino acid (i.e, Glycine) as molecular device. ES Matr. Manuf. 21, 826 (2023).

    CAS  Google Scholar 

  26. R.S. Sawhney, and G. Sikri, Lysine based dipeptides-molecular rectifiers with very high rectification ratio and their application towards designing logic gates. Phys. E Low-dimensional Syst. Nanostruct. 156, 115843 (2024). https://doi.org/10.1016/J.PHYSE.2023.115843.

    Article  CAS  Google Scholar 

  27. PubChem, https://pubchem.ncbi.nlm.nih.gov/

  28. G.T. Fu, X. Jiang, R. Wu, S.-H. Wei, D.-M. Sun, Y.-W. Tang, T.-H. Lu, and Y. Chen, Arginine-assisted synthesis and catalytic properties of single-crystalline palladium tetrapods. ACS Appl. Mater. Interfaces 6, 22790 (2014). https://doi.org/10.1021/am506965f.

    Article  CAS  Google Scholar 

  29. S.W. Vetter, Glycated serum albumin and AGE receptors. Adv. Clin. Chem. 72, 205 (2015). https://doi.org/10.1016/BS.ACC.2015.07.005.

    Article  CAS  Google Scholar 

  30. D.S. Dwyer, Electronic properties of amino acid side chains: quantum mechanics calculation of substituent effects. BMC Chem. Biol. 5, 2 (2005). https://doi.org/10.1186/1472-6769-5-2.

    Article  CAS  Google Scholar 

  31. E.J. Milner-White, The partial charge of the nitrogen atom in peptide bonds. Protein Sci. 6, 2477 (1997). https://doi.org/10.1002/PRO.5560061125.

    Article  CAS  Google Scholar 

  32. D.F. Plusquellic and D.W. Pratt, Probing the electronic structure of peptide bonds using methyl groups. J. Phys. Chem. A 111, 7391 (2007). https://doi.org/10.1021/JP070846Q.

    Article  CAS  Google Scholar 

  33. A. Aviram and M.A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29, 277 (1974). https://doi.org/10.1016/0009-2614(74)85031-1.

    Article  CAS  Google Scholar 

  34. L.D. Wescott and D.L. Mattern, Donor-σ-acceptor molecules incorporating a nonadecyl-swallowtailed perylenediimide acceptor. J. Org. Chem. 68, 10058 (2003). https://doi.org/10.1021/JO035409W/SUPPL_FILE/JO035409WSI20030926_024022.PDF.

    Article  CAS  Google Scholar 

  35. G.J. Ashwell, W.D. Tyrrell, and A.J. Whittam, Molecular rectification: Self-assembled monolayers in which donor-(π-bridge)-acceptor moieties are centrally located and symmetrically coupled to both gold electrodes. J. Am. Chem. Soc. 126, 7102 (2004). https://doi.org/10.1021/JA049633U/ASSET/IMAGES/JA049633U.SOCIAL.JPEG_V03.

    Article  CAS  Google Scholar 

  36. G.J. Ashwell, B. Urasinska, and W.D. Tyrrell, Molecules that mimic Schottky diodes. Phys. Chem. Chem. Phys. 8, 3314 (2006). https://doi.org/10.1039/B604092F.

    Article  CAS  Google Scholar 

  37. J.I.N. Oliveira, E.L. Albuquerque, U.L. Fulco, P.W. Mauriz, and R.G. Sarmento, Electronic transport through oligopeptide chains: an artificial prototype of a molecular diode. Chem. Phys. Lett. 612, 14 (2014). https://doi.org/10.1016/j.cplett.2014.07.062.

    Article  CAS  Google Scholar 

  38. W. Ding, C.F.A. Negre, J.L. Palma, A.C. Durrell, L.J. Allen, K.J. Young, R.L. Milot, C.A. Schmuttenmaer, G.W. Brudvig, R.H. Crabtree, and V.S. Batista, Linker rectifiers for covalent attachment of transition-metal catalysts to metal-oxide surfaces. ChemPhysChem 15, 1138 (2014). https://doi.org/10.1002/CPHC.201400063.

    Article  CAS  Google Scholar 

  39. F.M. Hossain, F. Al-Dirini, and E. Skafidas, Contactless electronic transport in a bio-molecular junction. Appl. Phys. Lett. 105, 043102 (2014). https://doi.org/10.1063/1.4891857.

    Article  CAS  Google Scholar 

  40. M.D. Ganji, H. Aghaie, and M.R. Gholami, Theoretical study of the electron transport through the cysteine amino acid nanomolecular wire. Int. J. Nanosci. 07, 95 (2008). https://doi.org/10.1142/s0219581x08005225.

    Article  CAS  Google Scholar 

  41. A. Kokabi, S.B. Touski, and A. Mamdouh, Negative differential resistance, rectification, tunable peak-current position and switching effects in an alanine-based molecular device. J. Med. Eng. Technol. 45, 505 (2021). https://doi.org/10.1080/03091902.2020.1775904.

    Article  Google Scholar 

  42. S. Hwang, Y.S. Chi, B.S. Lee, S.G. Lee, I.S. Choi, and J. Kwak, pH-Dependent rectification in self-assembled monolayers based on electrostatic interactions. Chem. Commun. 2, 183 (2006). https://doi.org/10.1039/B510270G.

    Article  Google Scholar 

  43. M. Li, B. Tu, B. Cui, X. Zhao, L. Yang, Q. Fang, Y.M. Yan, and B. Grzybowski, Efficient and long-lasting current rectification by laminated yet separated, oppositely charged monolayers. ACS Appl. Electron. Mater. 1, 2295 (2019). https://doi.org/10.1021/acsaelm.9b00482.

    Article  CAS  Google Scholar 

  44. W. Zhang, X. Zhang, C. Lu, Y. Wang, and Y. Deng, Flexible and transparent paper-based ionic diode fabricated from oppositely charged microfibrillated cellulose. J. Phys. Chem. C 116, 9227 (2012). https://doi.org/10.1021/jp301924g.

    Article  CAS  Google Scholar 

  45. X. Chen, M. Roemer, L. Yuan, W. Du, D. Thompson, E.D. Barco, and C.A. Nijhuis, Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. Nat. Nanotechnol. 12, 797 (2017). https://doi.org/10.1038/nnano.2017.110.

    Article  CAS  Google Scholar 

  46. L.A. Zotti and J.C. Cuevas, Electron transport through homopeptides: are they really good conductors? ACS Omega 3, 3778 (2018). https://doi.org/10.1021/ACSOMEGA.7B01917.

    Article  CAS  Google Scholar 

  47. D.M. Cardamone and G. Kirczenow, Single-molecule device prototypes for protein-based nanoelectronics: negative differential resistance and current rectification in oligopeptides. Phys. Rev. B Condens. Matter Mater. Phys. 77, 165403 (2008). https://doi.org/10.1103/PhysRevB.77.165403.

    Article  CAS  Google Scholar 

  48. X. Xiao, B. Xu, and N. Tao, Changes in the conductance of single peptide molecules upon metal-ion binding. Angew. Chem. Int. Ed. Engl. 43, 6148 (2004). https://doi.org/10.1002/ANIE.200460886.

    Article  CAS  Google Scholar 

  49. S.Y. Sheu and D.Y. Yang, Mechanically controlled electron transfer in a single-polypeptide transistor. Sci. Rep. 7, 1 (2017). https://doi.org/10.1038/srep39792.

    Article  CAS  Google Scholar 

  50. S. Sek, K. Swiatek, and A. Misicka, Electrical behavior of molecular junctions incorporating α-helical peptide. J. Phys. Chem. B 109, 23121 (2005). https://doi.org/10.1021/jp055709c.

    Article  CAS  Google Scholar 

  51. K. Natori, Nonideality of drain electrode and ballistic performance of MOSFET. Jpn. J. Appl. Phys. 54, 044102 (2015). https://doi.org/10.7567/JJAP.54.044102.

    Article  CAS  Google Scholar 

  52. J.D. Kiely and J.E. Houston, Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57, 12588 (1998). https://doi.org/10.1103/PhysRevB.57.12588.

    Article  CAS  Google Scholar 

  53. T. Tsuru and Y. Shibutani, Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu, Phys Rev. B - Condens. Matter Mater. Phys. 75, 035415 (2007). https://doi.org/10.1103/PhysRevB.75.035415.

    Article  CAS  Google Scholar 

  54. M. Kaur, R.S. Sawhney, and D. Engles, (2014) To expound superconductive quantum transport for C20 fullerene with disparate electrode material. In: 2014 IEEE 2nd Int. Conf. Emerg. Electron. Mater. Dev., ICEE 2014 Conf. Proc., https://doi.org/10.1109/ICEmElec.2014.7151164

  55. L.A. Zotti, J. Beatrice Bednarz, D.C. Hurtado-Gallego, G. Rubio-Bollinger, N. Agrait, and H.S.J. van der Zant, Can one define the conductance of amino acids? Biomolecules (2019). https://doi.org/10.3390/biom9100580.

    Article  Google Scholar 

  56. J.M. Brisendine, S. Refaely-Abramson, Z.F. Liu, J. Cui, F. Ng, J.B. Neaton, R.L. Koder, and L. Venkataraman, Probing charge transport through peptide bonds. J. Phys. Chem. Lett. 9, 763 (2018). https://doi.org/10.1021/acs.jpclett.8b00176.

    Article  CAS  Google Scholar 

  57. E. Leary, L.A. Zotti, D. Miguel, I.R. Márquez, L. Palomino-Ruiz, J.M. Cuerva, G. Rubio-Bollinger, M.T. González, and N. Agrait, The role of oligomeric gold-thiolate units in single-molecule junctions of thiol-anchored molecules. J. Phys. Chem. C 122, 3211 (2018). https://doi.org/10.1021/acs.jpcc.7b11104.

    Article  CAS  Google Scholar 

  58. L.A. Zotti, T. Kirchner, J.C. Cuevas, F. Pauly, T. Huhn, E. Scheer, and A. Erbe, Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6, 1529 (2010). https://doi.org/10.1002/smll.200902227.

    Article  CAS  Google Scholar 

  59. A. de Melo Souza, I. Rungger, R.B. Pontes, A.R. Rocha, A.J.R. Da Silva, U. Schwingenschlöegl, and S. Sanvito, Stretching of BDT-gold molecular junctions: thiol or thiolate termination? Nanoscale 6, 14495 (2014). https://doi.org/10.1039/C4NR04081C.

    Article  CAS  Google Scholar 

  60. Y. Zhao, W. Liu, J. Zhao, Y. Wang, J. Zheng, J. Liu, W. Hong, and Z.Q. Tian, The fabrication, characterization and functionalization in molecular electronics. Int. J. Extrem. Manuf. 4, 022003 (2022). https://doi.org/10.1088/2631-7990/AC5F78.

    Article  Google Scholar 

  61. Y. Komoto, S. Fujii, M. Iwane, and M. Kiguchi, Single-molecule junctions for molecular electronics. J. Mater. Chem. C. 4, 8842 (2016). https://doi.org/10.1039/C6TC03268K.

    Article  CAS  Google Scholar 

  62. Z. Lu, J. Zheng, J. Shi, B.F. Zeng, Y. Yang, W. Hong, and Z.Q. Tian, Application of micro/nanofabrication techniques to on-chip molecular electronics. Small Methods. 5, 2001034 (2021). https://doi.org/10.1002/SMTD.202001034.

    Article  CAS  Google Scholar 

  63. F. Evers, R. Korytár, S. Tewari, and J.M. Van Ruitenbeek, Advances and challenges in single-molecule electron transport. Rev. Mod. Phys. 92, 035001 (2020). https://doi.org/10.1103/RevModPhys.92.035001.

    Article  CAS  Google Scholar 

  64. B. Xu and N.J. Tao, Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221 (2003). https://doi.org/10.1126/SCIENCE.1087481.

    Article  CAS  Google Scholar 

  65. B. Xu, X. Xiao, and N.J. Tao, Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164 (2003). https://doi.org/10.1021/ja038949j.

    Article  CAS  Google Scholar 

  66. D. Xiang, H. Jeong, T. Lee, and D. Mayer, Mechanically controllable break junctions for molecular electronics. Adv. Mater. 25, 4845 (2013). https://doi.org/10.1002/ADMA.201301589.

    Article  CAS  Google Scholar 

  67. C.J. Muller, J.M. van Ruitenbeek, and L.J. de Jongh, Experimental observation of the transition from weak link to tunnel junction. Phys. C Supercond. 191, 485 (1992). https://doi.org/10.1016/0921-4534(92)90947-B.

    Article  Google Scholar 

  68. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, and J.M. Tour, Conductance of a molecular junction. Science 278, 252 (1997). https://doi.org/10.1126/SCIENCE.278.5336.252.

    Article  CAS  Google Scholar 

  69. M.L. Perrin, C.A. Martin, F. Prins, A.J. Shaikh, R. Eelkema, J.H. van Esch, and D. Dulić, Charge transport in a zinc–porphyrin single-molecule junction. Beilstein J. Nanotechnol. 2(1), 714–719 (2011). https://doi.org/10.3762/BJNANO.2.77.

    Article  Google Scholar 

  70. J.M. Hamill, K. Wang, and B. Xu, Characterizing molecular junctions through the mechanically controlled break-junction approach. Rep. in Electrochem. 4, 1 (2014). https://doi.org/10.2147/RIE.S46629.

    Article  CAS  Google Scholar 

  71. T. Böhler, J. Grebing, A. Mayer-Gindner, H.V. Löhneysen, and E. Scheer, Mechanically controllable break-junctions for use as electrodes for molecular electronics. Nanotechnology 15, S465 (2004). https://doi.org/10.1088/0957-4484/15/7/054.

    Article  CAS  Google Scholar 

  72. K. Burke, Improving electronic structure calculations. Physics 9, 108 (2016). https://doi.org/10.1103/physics.9.108.

    Article  Google Scholar 

  73. T. Van Mourik, M. Bühl, and M.P. Gaigeot, Density functional theory across chemistry, physics and biology. Philos. Trans. A. Math. Phys. Eng. Sci. 372, 20120488 (2014). https://doi.org/10.1098/RSTA.2012.0488.

    Article  Google Scholar 

  74. Atomistix Toolkit version 2013.8. QuantumWise. http://www.quantumwise.com

  75. S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P.A. Khomyakov, U.G. Vej-Hansen, M.E. Lee, S.T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M.L.N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, and K. Stokbro, QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 32, 015901 (2019). https://doi.org/10.1088/1361-648X/ab4007.

    Article  Google Scholar 

  76. S. Liu, A. Nurbawono, and C. Zhang, Density functional theory for steady-state nonequilibrium molecular junctions. Sci. Rep. 5, 1 (2015). https://doi.org/10.1038/srep15386.

    Article  CAS  Google Scholar 

  77. V. Vennelakanti, A. Nandy, and H.J. Kulik, The effect of hartree-fock exchange on scaling relations and reaction energetics for C-H activation catalysts. Top. Catal. 65, 296 (2021). https://doi.org/10.1007/S11244-021-01482-5.

    Article  Google Scholar 

  78. S. Liu, Y.P. Feng, and C. Zhang, Communication: electronic and transport properties of molecular junctions under a finite bias: a dual mean field approach. J. Chem. Phys. 139, 191103 (2013). https://doi.org/10.1063/1.4833677.

    Article  CAS  Google Scholar 

  79. C. Zhang, Uniform electron gas under an external bias: the generalized Thomas-Fermi-Dirac model and the dual-mean-field theory. J. At. Mol. Sci. 5, 95 (2014). https://doi.org/10.4208/jams.111813.120613a.

    Article  CAS  Google Scholar 

  80. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  81. X. Xu and W.A. Goddard, The extended Perdew–Burke–Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. J. Chem. Phys. 121, 4068 (2004). https://doi.org/10.1063/1.1771632.

    Article  CAS  Google Scholar 

  82. M. Saffari, M.A. Mohebpour, H. Rahimpour Soleimani, and M. Bagheri Tagani, DFT analysis and FDTD simulation of CH3NH3PbI3-xClx mixed halide perovskite solar cells: role of halide mixing and light trapping technique. J. Phys. D Appl. Phys. 50, 415501 (2017). https://doi.org/10.1088/1361-6463/aa83c8.

    Article  CAS  Google Scholar 

  83. M.J.G. Peach, P. Benfield, T. Helgaker, and D.J. Tozer, Excitation energies in density functional theory: an evaluation and a diagnostic test. J. Chem. Phys. 128, 044118–044121 (2008). https://doi.org/10.1063/1.2831900.

    Article  CAS  Google Scholar 

  84. N. Troullier and J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991). https://doi.org/10.1103/PhysRevB.43.1993.

    Article  CAS  Google Scholar 

  85. C.A.B. da Silva, S.M. Côrrea, J.D.S. dos Santos, K.R. Nisioka, M. Moura-Moreira, Y.P. Wang, and H.P. Cheng, Topological insulator-metal transition and molecular electronics device based on zigzag phagraphene nanoribbon. J. Appl. Phys. 124, 084303 (2018). https://doi.org/10.1063/1.5029845.

    Article  CAS  Google Scholar 

  86. J. Vacek, J.V. Chocholoušová, I.G. Stará, I. Starý, and Y. Dubi, Mechanical tuning of conductance and thermopower in helicene molecular junctions. Nanoscale 7, 8793 (2015). https://doi.org/10.1039/c5nr01297j.

    Article  CAS  Google Scholar 

  87. S. Datta, (2005) Quantum transport: atom to transistor, 9780521631. Cambridge University Press, https://doi.org/10.1017/CBO9781139164313.

  88. K. Wang and B. Xu, Modulation and control of charge transport through single-molecule junctions. Top. Curr. Chem. 375, 1 (2017). https://doi.org/10.1007/s41061-017-0105-z.

    Article  CAS  Google Scholar 

  89. G. Sikri and R.S. Sawhney, Computational evaluation of transport parameters and logic circuit designing of l-Lysine amino acid stringed to Au, Ag, Cu, Pt, and Pd electrodes. J. Mol. Model. 29, 1 (2023). https://doi.org/10.1007/S00894-023-05471-1.

    Article  Google Scholar 

  90. E.R. Brown, J.R. Söderström, C.D. Parker, L.J. Mahoney, K.M. Molvar, and T.C. McGill, Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes. Appl. Phys. Lett. 58, 2291 (1998). https://doi.org/10.1063/1.104902.

    Article  Google Scholar 

  91. G.I. Haddad, J.R. East, and H. Eisele, Two-terminal active devices for terahertz sources. Int. J. High Speed Elect. Sys. 13, 395 (2012). https://doi.org/10.1142/S0129156403001788.

    Article  Google Scholar 

  92. T.P.E. Broekaert, B. Brar, J.P.A. van der Wagt, A.C. Seabaugh, F.J. Morris, T.S. Moise, E.A. Beam, and G.A. Frazier, A monolithic 4-bit 2-Gsps resonant tunneling analog-to-digital converter. IEEE J. Solid-State Circuits 33, 1342 (1998). https://doi.org/10.1109/4.711333.

    Article  Google Scholar 

  93. A.S. Blum, J.G. Kushmerick, D.P. Long, C.H. Patterson, J.C. Yang, J.C. Henderson, and B.R. Ratna, Molecularly inherent voltage-controlled conductance switching. Nat. Mater. 4, 167 (2005). https://doi.org/10.1038/nmat1309.

    Article  CAS  Google Scholar 

  94. K. Stokbro, J. Taylor, M. Brandbyge, and P. Ordejón, TranSIESTA: a spice for molecular electronics. Ann. NY Acad. Sci. 1006, 212 (2003). https://doi.org/10.1196/annals.1292.014.

    Article  CAS  Google Scholar 

  95. C. Guo, X. Yu, S.R. Abramson, L. Sepunaru, T. Bendikov, I. Pecht, L. Kronik, A. Vilan, M. Sheves, and D. Cahen, Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping. Proc. Natl. Acad. Sci. U.S.A. 113, 10785 (2016). https://doi.org/10.1073/pnas.1606779113.

    Article  CAS  Google Scholar 

  96. A. Grigoriev, N.V. Skorodumova, S.I. Simak, G. Wendin, B. Johansson, and R. Ahuja, Electron transport in stretched monoatomic gold wires. Phys. Rev. Lett. 97, 236807 (2006). https://doi.org/10.1103/PhysRevLett.97.236807.

    Article  CAS  Google Scholar 

  97. M.D. Ganji and F. Nourozi, Density functional non-equilibrium Green’s function (DFT-NEGF) study of the smallest nano-molecular switch. Phys. E Low-dimensional Syst. Nanostruct. 40, 2606 (2008). https://doi.org/10.1016/j.physe.2007.09.123.

    Article  CAS  Google Scholar 

  98. A. Kole and D.S. Ang, First principle investigation of electronic transport properties of the edge shaped graphene-porphine molecular junction device. AIP Adv. 8, 085009 (2018). https://doi.org/10.1063/1.5037257.

    Article  CAS  Google Scholar 

  99. J.M. Brisendine, S.R. Abramson, Z.-F. Liu, J. Cui, F. Ng, J.B. Neaton, R.L. Koder, and L. Venkataraman, Probing charge transport through peptide bonds. J. Phys. Chem. Lett. 9, 763 (2018). https://doi.org/10.1021/acs.jpclett.8b00176.

    Article  CAS  Google Scholar 

  100. E. Wierzbinski, X. Yin, K. Werling, and D.H. Waldeck, The effect of oxygen heteroatoms on the single molecule conductance of saturated chains. J. Phys. Chem. B 117, 4431 (2013). https://doi.org/10.1021/jp307902v.

    Article  CAS  Google Scholar 

  101. F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráček, and P. Jelínek, Probing charges on the atomic scale by means of atomic force microscopy. Phys. Rev. Lett. 115, 076101 (2015). https://doi.org/10.1103/physrevlett.115.076101.

    Article  CAS  Google Scholar 

  102. H.W. Hugosson, A. Laio, P. Maurer, and U. Rothlisberger, A comparative theoretical study of dipeptide solvation in water. J. Comput. Chem. 27, 672 (2006). https://doi.org/10.1002/jcc.20360.

    Article  CAS  Google Scholar 

  103. P.E.M. Lopes, J. Huang, J. Shim, Y. Luo, H. Li, B. Roux, and A.D. MacKerell, Polarizable force field for peptides and proteins based on the classical drude oscillator. J. Chem. Theory Comput. 9, 5430 (2013). https://doi.org/10.1021/ct400781b.

    Article  CAS  Google Scholar 

  104. V. Bystrov, A. Sidorova, A. Lutsenko, D. Shpigun, E. Malyshko, A. Nuraeva, P. Zelenovskiy, S. Kopyl, and A. Kholkin, Modeling of self-assembled peptide nanotubes and determination of their chirality sign based on dipole moment calculations. Nanomater. 11, 2415 (2021). https://doi.org/10.3390/nano11092415.

    Article  CAS  Google Scholar 

  105. Y. Selzer, A. Salomon, J. Ghabboun, and D. Cahen, Voltage-driven changes in molecular dipoles yield negative differential resistance at room temperature. Angew. Chem. Int. Ed. Engl. 41, 827 (2002). https://doi.org/10.1002/1521-3773(20020301)41:5%3c827::aid-anie827%3e3.0.co;2-n.

    Article  CAS  Google Scholar 

  106. M. Strange, C. Rostgaard, H. Häkkinen, and K.S. Thygesen, Self-consistent GW calculations of electronic transport in thiol and amine-linked molecular junctions. Phys. Rev. B Condens. Matter Mater. Phys. 83, 115108 (2011). https://doi.org/10.1103/PhysRevB.83.115108.

    Article  CAS  Google Scholar 

  107. S.Y. Quek, L. Venkataraman, H.J. Choi, S.G. Louie, M.S. Hybertsen, and J.B. Neaton, Amine - gold linked single-molecule circuits: experiment and theory. Nano Lett. 7, 3477 (2007). https://doi.org/10.1021/nl072058i.

    Article  CAS  Google Scholar 

  108. M.L. Perrin, C.J.O. Verzijl, C.A. Martin, A.J. Shaikh, R. Eelkema, J.H. van Esch, J.M. van Ruitenbeek, J.M. Thijssen, H.S.J. van der Zant, and D. Dulić, Large tunable image-charge effects in single-molecule junctions. Nat. Nanotechnol. 8, 282 (2013). https://doi.org/10.1038/nnano.2013.26.

    Article  Google Scholar 

  109. C.J.O. Verzijl, J.A. Celis Gil, M.L. Perrin, D. Dulić, H.S.J. Van Der Zant, and J.M. Thijssen, Image effects in transport at metal-molecule interfaces. J. Chem. Phys. 143, 174106 (2015). https://doi.org/10.1063/1.4934882.

    Article  CAS  Google Scholar 

  110. M.L. Perrin, R. Eelkema, J. Thijssen, F.C. Grozema, and H.S.J. Van Der Zant, Single-molecule functionality in electronic components based on orbital resonances. Phys. Chem. Chem. Phys. 22, 12849 (2020). https://doi.org/10.1039/D0CP01448F.

    Article  CAS  Google Scholar 

  111. I. Bâldea, Quantifying the relative molecular orbital alignment for molecular junctions with similar chemical linkage to electrodes. Nanotechnology 25, 455202 (2014). https://doi.org/10.1088/0957-4484/25/45/455202.

    Article  CAS  Google Scholar 

  112. A.Z. Thong, M.S.P. Shaffer, and A.P. Horsfield, Rectification and negative differential resistance via orbital level pinning. Sci. Rep. 8, 1 (2018). https://doi.org/10.1038/s41598-018-27557-0.

    Article  CAS  Google Scholar 

  113. S. Pleutin, H. Grabert, G.L. Ingold, and A. Nitzan, The electrostatic potential profile along a biased molecular wire: a model quantum-mechanical calculation. J. Chem. Phys. 118, 3756 (2003). https://doi.org/10.1063/1.1539863.

    Article  CAS  Google Scholar 

  114. M.V.R. Rao, M. Atreyi, and M.R. Rajeswari, Specific interactions between amino acid side chains —a partial molar volume study. Cand. J. Chem. 66, 487 (2011). https://doi.org/10.1139/V88-083.

    Article  Google Scholar 

  115. J. Liu, X.Y. Qi, T. Jiang, Z. Lin, S. Chen, L. Xie, Q. Fan, Q. Ling, H. Zhang, and W. Huang, A rectifying diode with hysteresis effect from an electroactive hybrid of carbazole-functionalized polystyrene with CdTe nanocrystals via electrostatic interaction. Sci. China Chem. 53, 2324 (2010). https://doi.org/10.1007/S11426-010-4095-8.

    Article  CAS  Google Scholar 

  116. S. Hedström, A.J. Matula, and V.S. Batista, Charge transport and rectification in donor-acceptor dyads. J. Phys. Chem. C 121, 19053 (2017). https://doi.org/10.1021/acs.jpcc.7b05749.

    Article  CAS  Google Scholar 

  117. S. Kubo and H. Kaji, Parameter-free multiscale simulation realising quantitative prediction of hole and electron mobilities in organic amorphous system with multiple frontier orbitals. Sci. Rep. 8, 1 (2018). https://doi.org/10.1038/s41598-018-31722-w.

    Article  CAS  Google Scholar 

  118. G. Sikri and R.S. Sawhney, l-Glutamic acid (i.e. l-amino acid) based molecular junction as rectifiers. Mater. Today Proc. 67, 31 (2022). https://doi.org/10.1016/j.matpr.2022.05.033.

    Article  CAS  Google Scholar 

  119. G. Sikri and R. Singh Sawhney, l-Aspartic acid based molecular rectifier using dissimilar electrodes. Mater. Today Proc. 71, 408–498 (2022). https://doi.org/10.1016/j.matpr.2022.10.001.

    Article  CAS  Google Scholar 

  120. S. Ghasemi and K. Moth-Poulsen, Single molecule electronic devices with carbon-based materials: status and opportunity. Nanoscale 13, 659 (2021). https://doi.org/10.1039/d0nr07844a.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Sikri.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1212 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawhney, R.S., Sikri, G. First-Principles Approach to Elucidating Significant Rectification Ratios in Oppositely Charged Dipeptides. J. Electron. Mater. 53, 1116–1131 (2024). https://doi.org/10.1007/s11664-023-10817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10817-9

Keywords

Navigation