Skip to main content
Log in

Investigating the influence of electrode Miller indices alteration on electronic transport in thiophene-based molecular junctions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Electrical charge transport through thiophene-dithiol-based molecular wires attached to gold electrodes with three different types of crystallographic orientations (<1,1,1>, <1,1,0 > and <1,0,1 >) was investigated. Electron transport in the systems under consideration was evaluated systematically by analyzing current values, transmission spectrum, projected device density of states and zero bias orbital analysis utilizing density functional theory in conjunction with non-equilibrium Green’s function. Investigations proved that tuning of conductance in nano-molecular junctions is possible through different electrode orientations. As the HOMO–LUMO gap in the <1,1,0 > oriented thiophene dithiol junction is drastically less than that of the other configurations under consideration, the <1,1,0 > configuration exhibited superior constructive conductance in comparison to other junction orientations. This provided us with ideas for designing pioneering hetero-cyclic nano-scale electronics devices. Also, <1,1,0 > has been found to show negative differential conductance behavior above +2.6 V and below −2.6 V, and hence has potential applications in oscillating and switching circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278:252–254

    Article  CAS  Google Scholar 

  2. Li Y, Yao J, Liu C, Yang C (2008) Theoretical investigation on electron transport properties of a single molecular diode. J Mol Struct (THEOCHEM) 867:59–63

    Article  CAS  Google Scholar 

  3. Qiu M, Liew KM (2011) Deformation effects of multi-functional monatomic carbon ring device. Phys Lett A 375:2234–2238

    Article  CAS  Google Scholar 

  4. Zhao P, Wang PJ, Zhang Z, Liu DS (2010) Electronic transport properties of a molecular switch with carbon nanotube electrodes: a first-principles study. Physica B 405:446–450

    Article  CAS  Google Scholar 

  5. Zhao P, Wang PJ, Zhang Z, Ren MJ, Liu DS (2010) First-principles study of the electronic transport properties of the carbon nanobuds. Physica B 405:2097–2101

    Article  CAS  Google Scholar 

  6. Zhao P, Zhang Z, Wang PJ, Liu DS (2009) 1,3-diphenyltriazene as a possible optical molecular switch: a first-principles study. Physica B 404:3462–3465

    Article  CAS  Google Scholar 

  7. Zhao P, Wang PJ, Zhang Z, Liu DS (2010) Negative differential resistance in a carbon nanotube-based molecular junction. Phys Lett A 374:1167–1171

    Article  CAS  Google Scholar 

  8. Bauschlicher Jr CW, Lawson JW (2008) Current–voltage curves for molecular junctions: the issue of the basis set for the metal contacts. Theor Chem Account 119:429–435

    Article  CAS  Google Scholar 

  9. An YP, Yang CL, Wang MS, Ma XG, Wang DH (2010) First-principles study of transport properties of endohedral li@C20 metallofullerene. Curr Appl Phys 10:260–265

    Article  Google Scholar 

  10. Zahedi E, Pangh A (2011) The comparative study in transport properties of furan, thiophene and selenophene dithiols in nano electronic. Superlattices Microstruct 50:386–399

    Article  CAS  Google Scholar 

  11. Tian W, Datta S, Hong S, Reifenberger RG, Henderson JI, Kubiak CP (1998) Resistance of molecular nanostructures. Phys E 1:304–309

    Article  Google Scholar 

  12. Johansson A, Stafström S (2000) Interactions between molecular wires and a gold surface. Chem Phys Lett 322:301–306

    Article  CAS  Google Scholar 

  13. Jalili S, Rafii-Tabar H (2005) Electronic conductance through organic nanowires. Phys Rev B 71:165410

    Article  Google Scholar 

  14. Jalili S, Moradi F (2005) Charge transport through thiophene bithiol molecule as a molecular wire. J Theor Comp Chem 4:1001

    Article  CAS  Google Scholar 

  15. Kergueris C, Bourgoin JP, Palacin S (1999) Experimental investigations of the electrical transport properties of dodecanethiol and αω bisthiolterthiophene molecules embedded in metal-molecule-metal junctions. Nanotechnology 10:8

    Article  CAS  Google Scholar 

  16. Jalili S, Pangh AH (2009) The effect of metal-molecule nano-contacts with different end groups in molecular electronics. Int J M Phys B 23:5657–5669

    Article  CAS  Google Scholar 

  17. Jalili S, Pangh AH (2010) The effect of metal-molecule contacts on transport properties of molecules J. Comput Theor Nanosci 7:1559–1569

    Article  CAS  Google Scholar 

  18. Wang L-h, Zhang Z-z, Lv C-q, Ding B-j, Guo Y (2013) Large negative differential resistance and rectifying performance modulated by contact sites in fused thiophene trimmer-based molecular devices. Phys Lett A 377:1920–1924

    Article  CAS  Google Scholar 

  19. Petrov VA, Dooley R, Marchione AA, Marshall W (2016) Reaction of hexafluorothioacetone dimer with indoles, pyrroles, furans and thiophenes. J Fluor Chem 182:12–21

    Article  CAS  Google Scholar 

  20. Pasini M, Destri S, Botta C, Porzio W (1999) Synthesis, optical and electrochemical characterization of lnter-ring bridged tetramers based on thiophene. Tetrahedron 55:14985–14994

    Article  CAS  Google Scholar 

  21. Zahedi E (2012) DFT-NEGF study of transport properties and NDR behavior in fused furan and thiophene dimmers. Physica B 407:4503–4511

    Article  CAS  Google Scholar 

  22. Sen A, Kaun CC (2010) Effect of electrode orientations on charge transport in. Alkanedithiol single-molecule junctions. ACS Nano 4(11):6404–6408

    Article  CAS  Google Scholar 

  23. Kaun CC, Guo H, Grütter P, Lennox RB (2004) Momentum filtering effect in molecular wires. Phys Rev B 70:195309

    Article  Google Scholar 

  24. Luzhbin DA, Kaun CC (2010) Origin of high- and low-conductance traces in alkanediisothiocyanate single-molecule contacts. Phys Rev B 81:035424

    Article  Google Scholar 

  25. Kaur RP, Sawhney RS, Engles D (2016) Effect of gold electrode crystallographic orientations on charge transport through aromatic molecular junctions. J Mol Phys 114:2289–2298. https://doi.org/10.1080/00268976.2016.1197431

  26. Lang ND (1995) Resistance of atomic wires. Phys Rev B 52:5335

    Article  CAS  Google Scholar 

  27. Xue Y (2002) First-principles based matrix Green's function approach to molecular electronic devices: general formalism. Chem Phys 281:151–170

    Article  CAS  Google Scholar 

  28. Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for non-equilibrium electron transport. Phys Rev B 65:165401

    Article  Google Scholar 

  29. Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63:245407

    Article  Google Scholar 

  30. Magoga M, Joachim C (1997) Conductance and transparence of long molecular wires. Phys Rev B 56:4722

    Article  CAS  Google Scholar 

  31. Corbel S, Cerda J, Sautet P (1999) Ab initio calculations of scanning tunneling microscopy images within a scattering formalism. Phys Rev B 60:1989

    Article  CAS  Google Scholar 

  32. Cerdá J, Soria F (2000) Accurate and transferable extended Hückel-type tight-binding parameters. Phys Rev B 61:7965

    Article  Google Scholar 

  33. Emberly EG, Kirczenow G (2001) Multiterminal molecular wire systems: a self-consistent theory and computer simulations of charging and transport. Phys Rev B 62:10451

    Article  Google Scholar 

  34. Zahid F, Paulsson M, Polizzi E, Ghosh AW, Siddiqui L, Datta S (2005) A self-consistent transport model for molecular conduction based on extended Hückel theory with full three-dimensional electrostatics. J Chem Phys 123:064707

    Article  CAS  Google Scholar 

  35. Kienle D, Cerda JI, Ghosh AW (2006) Extended Hückel theory for band structure, chemistry, and transport. I. Carbon nanotubes. J Appl Phys 100:043714

    Article  Google Scholar 

  36. Kienle D, Bevan KH, Liang GC, Siddiqui L, Cerda JI, Ghosh AW (2006) Extended Hückel theory for band structure, chemistry, and transport. II. Silicon. J Appl Phys 100:043715

    Article  Google Scholar 

  37. Fronzi M, Soon AS, Delley B, Traversa E, Stampfly C (2009) Stability and morphology of cerium oxide surfaces in an oxidizing environment: a first principles investigation. J Chem Phys 131:104701

    Article  Google Scholar 

  38. Fronzi M, Piccinin S, Delley B, Traversa E, Stampfly C (2009) Water adsorption on the stoichemetric and reduced CeO2(111) surface: a first principles investigation. Phys Chem Phys 11:9188

    Article  CAS  Google Scholar 

  39. Singh G, Kaur M, Mahajan S, Sawhney RS (2016) To inquire the effects of doping on current characteristics of fullerene molecular junction device. Mater Today Proc 3:2422

    Article  Google Scholar 

  40. Starikov E, Lewis JP, Tanaka S (eds) (2011) Modern methods for theoretical physical chemistry of biopolymers. Elsevier, Amsterdam

  41. Kaur RP, Sawhney RS, Engles D (2017) First principle transport modelling of be-doped organic molecular junctions. J Mol Graph Model 75:199–208. https://doi.org/10.1016/j.jmgm.2017.05.020

  42. Jalili S, Pangh AH (2009) The effect of metal-molecule nano-contacts with different end groups in molecular electronics. Int J M Phys B 23:5657

    Article  CAS  Google Scholar 

  43. Lawson JW, Bauschlicher Jr CW (2006) Transport in molecular junctions with different metallic contacts. Phys Rev B 74:125401

    Article  Google Scholar 

  44. Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  45. Lang ND, Kohn W (1971) Theory of metal surfaces: work function. Phys Rev B 3:1215

    Article  Google Scholar 

  46. Kaur RP, Sawhney RS, Engles D (2014) Augmenting molecular junctions with different transition metal contacts. J Multiscale Model 5(2):1350009

    Article  Google Scholar 

  47. Galperin M, Nitzan A, Ratner MA (2007) Inelastic effects in molecular junctions in the coulomb and Kondo regimes: non-equilibrium equation of motion approach. Phys Rev B 76:035301

    Article  Google Scholar 

  48. Toyoda K, Morimoto K, Morita K (2006) First-principles study on current through a single π conjugate molecule for analysis of carrier injection through an organic/metal interface. Surf Sci 600:5080

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Virtual Nano Lab at Guru Nanak Dev University, Amritsar for providing the computational facilities.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhleen Bindra Narang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Narang, S.B. & Randhawa, D.K.K. Investigating the influence of electrode Miller indices alteration on electronic transport in thiophene-based molecular junctions. J Mol Model 24, 63 (2018). https://doi.org/10.1007/s00894-018-3615-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3615-x

Keywords

Navigation