Skip to main content
Log in

Enhancing and Understanding the High Stretchability of Printable, Conductive Silver Nanowire Ink

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A printable conductive ink that is both highly conductive and stretchable is desired for flexible and wearable electronics. This can be achieved by using silver nanowires as the conductive filler instead of the typically used silver flakes or nanoparticles. It is shown here that long, thin nanowires, lower metal fills and employing plasma sintering rather than thermal annealing leads to the best stretchability. The optimized silver nanowire ink with a 5% metal fill can have resistivity as low as 9.3 × 10−6 Ω cm, increases resistance by only 5× after 250 cycles of 30% strain, and remains conductive to at least 500% strain. It is significantly more stretchable and conductive than commercial stretchable inks, especially at the low sintering temperatures often used in flexible electronics. Moreover, this ink represents the best combination of stretchability and conductivity of all printable inks in the literature. It is found that the reason for the high stretchability of nanowire inks is both its low metal fill and high mechanical strength.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Karim, S. Afroj, A. Malandraki, S. Butterworth, C. Beach, M. Rigout, K.S. Novoselov, A.J. Casson, and S.G. Yeates, All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J. Mater. Chem. C 5, 11640 (2017).

    Article  CAS  Google Scholar 

  2. R. Cao, X. Pu, X. Du, W. Yang, J. Wang, H. Guo, S. Zhao, Z. Yuan, C. Zhang, C. Li, and Z.L. Wang, Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction. ACS Nano 12, 5190 (2018).

    Article  CAS  Google Scholar 

  3. P. Wei, X. Yang, Z. Cao, X.L. Guo, H. Jiang, Y. Chen, M. Morikado, X. Qiu, and D. Yu, Flexible and stretchable electronic skin with high durability and shock resistance via embedded 3D printing technology for human activity monitoring and personal healthcare. Adv. Mater. Technol. 4, 1 (2019).

    Article  CAS  Google Scholar 

  4. S. Wang, J. Xu, W. Wang, G.J.N. Wang, R. Rastak, F. Molina-Lopez, J.W. Chung, S. Niu, V.R. Feig, J. Lopez, T. Lei, S.K. Kwon, Y. Kim, A.M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J.B.H. Tok, and Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83 (2018).

    Article  CAS  Google Scholar 

  5. Y.F. Wang, T. Sekine, Y. Takeda, J. Hong, A. Yoshida, H. Matsui, D. Kumaki, T. Nishikawa, T. Shiba, T. Sunaga, and S. Tokito, Printed strain sensor with high sensitivity and wide working range using a novel brittle-stretchable conductive network. ACS Appl. Mater. Interfaces 12, 35282 (2020).

    Article  CAS  Google Scholar 

  6. S. Yao and Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6, 2345 (2014).

    Article  CAS  Google Scholar 

  7. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8, 5154 (2014).

    Article  CAS  Google Scholar 

  8. C. Zhou, X. Zhang, N. Tang, Y. Fang, H. Zhang, and X. Duan, Rapid response flexible humidity sensor for respiration monitoring using nano-confined strategy. Nanotechnology 31, 125302 (2020).

    Article  CAS  Google Scholar 

  9. S. Yaragalla, S. Dussoni, M. Zahid, M. Maggiali, G. Metta, A. Athanasiou, and I.S. Bayer, Stretchable graphene and carbon nanofiber capacitive touch sensors for robotic skin applications. J. Ind. Eng. Chem. 101, 348 (2021).

    Article  CAS  Google Scholar 

  10. Z. Cui, F.R. Poblete, G. Cheng, S. Yao, X. Jiang, and Y. Zhu, Design and operation of silver nanowire based flexible and stretchable touch sensors. J. Mater. Res. 30, 79 (2014).

    Article  Google Scholar 

  11. C.K. Jeong, J. Lee, S. Han, J. Ryu, G.T. Hwang, D.Y. Park, J.H. Park, S.S. Lee, M. Byun, S.H. Ko, and K.J. Lee, A hyper-stretchable elastic-composite energy harvester. Adv. Mater. 27, 2866 (2015).

    Article  CAS  Google Scholar 

  12. Q. Chen, G. Liu, G. Chen, T. Mi, and J. Tai, Green synthesis of silver nanoparticles with glucose for conductivity enhancement of conductive ink. BioResources 12, 608 (2017).

    CAS  Google Scholar 

  13. L. Mo, Z. Guo, L. Yang, Q. Zhang, Y. Fang, Z. Xin, Z. Chen, K. Hu, L. Han, and L. Li, Silver nanoparticles based ink with moderate sintering in flexible and printed electronics. Int. J. Mol. Sci. 20, 2124 (2019).

    Article  CAS  Google Scholar 

  14. Y.L. Tai and Z.G. Yang, Facile and scalable preparation of solid silver nanoparticles (<10 nm) for flexible electronics. Surf. Interface Anal. 44, 529 (2012).

    Article  CAS  Google Scholar 

  15. W. Li, X. Xu, W. Li, Y. Zhao, and M. Chen, Green synthesis of micron-sized silver flakes and their application in conductive ink. J. Mater. Sci. 53, 6424 (2018).

    Article  CAS  Google Scholar 

  16. J.Y. Park, W.J. Lee, B.S. Kwon, S.Y. Nam, and S.H. Choa, Highly stretchable and conductive conductors based on Ag flakes and polyester composites. Microelectron. Eng. 199, 16 (2018).

    Article  CAS  Google Scholar 

  17. T. Zhong, N. Jin, W. Yuan, C. Zhou, W. Gu, and Z. Cui, Printable stretchable silver ink and application to printed RFID tags for wearable electronics. Materials (Basel) 12, 1 (2019).

    Article  Google Scholar 

  18. T. Lee and H. Park, The effect of MWCNTs on the electrical properties of a stretchable carbon composite electrode. Compos. Sci. Technol. 114, 11 (2015).

    Article  CAS  Google Scholar 

  19. A. Claypole, J. Claypole, L. Kilduff, D. Gethin, and T. Claypole, Stretchable carbon and silver inks for wearable applications. Nanomaterials 11, 1200 (2021).

    Article  CAS  Google Scholar 

  20. L. Lo, J. Zhao, H. Wan, Y. Wang, S. Chakrabartty, and C. Wang, An inkjet-printed PEDOT: PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl. Mater. Interfaces. 13, 21693 (2021).

    Article  CAS  Google Scholar 

  21. D. Li, X. Liu, X. Chen, W.Y. Lai, and W. Huang, A simple strategy towards highly conductive silver-nanowire inks for screen-printed flexible transparent conductive films and wearable energy-storage devices. Adv. Mater. Technol. 4, 1 (2019).

    Article  Google Scholar 

  22. X. Wu, Z. Zhou, Y. Wang, and J. Li, Syntheses of silver nanowires ink and printable flexible transparent conductive film: a review. Coatings 10, 865 (2020).

    Article  CAS  Google Scholar 

  23. Y. Yang, S. Duan, and H. Zhao, Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. Nanoscale 14, 11484 (2022).

    Article  CAS  Google Scholar 

  24. K.K. Krawczyk, J. Groten, O. Glushko, M. Krivec, M. Frühwirth, G. Schulz, C. Wolf, D. Hartmann, M. Moser, M.J. Cordill, B. Stadlober, and T. Griesser, Self-reducing silver ink on polyurethane elastomers for the manufacture of thin and highly stretchable electrical circuits. Chem. Mater. 33, 2742 (2021).

    Article  CAS  Google Scholar 

  25. J.F. Kurniawan, B. Tjhia, V.M. Wu, A. Shin, N.L.J. Sit, T. Pham, A. Nguyen, C. Li, R. Kumar, M. Aguilar-Rivera, I. Lerman, D.C. Kunkel, and T.P. Coleman, An adhesive-integrated stretchable silver–silver chloride electrode array for unobtrusive monitoring of gastric neuromuscular activity. Adv. Mater. Technol. 6, 1 (2021).

    Article  Google Scholar 

  26. N. Zavanelli and W.H. Yeo, Advances in screen printing of conductive nanomaterials for stretchable electronics. ACS Omega 6, 9344 (2021).

    Article  CAS  Google Scholar 

  27. A.J. Galante, B.C. Pilsbury, M. Li, M. Lemieux, Q. Liu, and P.W. Leu, Achieving highly conductive, stretchable, and washable fabric from reactive silver ink and increased interfacial adhesion. ACS Appl. Polym. Mater. 4, 5253 (2022).

    Article  CAS  Google Scholar 

  28. Y. Shi, L. He, Q. Deng, Q. Liu, L. Li, W. Wang, Z. Xin, and N. Tce, Synthesis and applications of silver nanowires for transparent conductive films. Micromachines 10, 330 (2019).

    Article  Google Scholar 

  29. H. Jang, B. Hwang, K. Lee, Y. Kim, J. Kim, H. Jang, B. Hwang, K. Lee, and Y. Kim, Controlling the size of silver nanowires produced by a tetrabutylammonium dichlorobromide salt-based polyol process : kinetics of silver crystal growth. AIP Adv. 8, 025303 (2018).

    Article  Google Scholar 

  30. H.D. Yun, D.M. Seo, M.Y. Lee, S.Y. Kwon, and L.S. Park, Effective synthesis and recovery of silver nanowires flexible and transparent conducting electrode. Metals (Basel) 6, 14 (2016).

    Article  Google Scholar 

  31. J. Liang, K. Tong, and Q. Pei, A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 28, 5986 (2016).

    Article  CAS  Google Scholar 

  32. W. Li, S. Yang, and A. Shamim, Screen printing of silver nanowires: balancing conductivity with transparency while maintaining flexibility and stretchability. NPJ Flex. Electron. 3, 13 (2019).

    Article  Google Scholar 

  33. S.H. Ke, Q.W. Xue, C.Y. Pang, P.W. Guo, W.J. Yao, H.P. Zhu, and W. Wu, Printing the ultra-long Ag nanowires inks onto the flexible textile substrate for stretchable electronics. Nanomaterials 9, 1 (2019).

    Article  Google Scholar 

  34. Y.Z.N. Htwe and M. Mariatti, Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: progress, opportunities, and challenges. J. Sci. Adv. Mater. Devices 7, 100435 (2022).

    Article  CAS  Google Scholar 

  35. F. Macionczyk, W. Bruckner, and G. Reiss, Stress–strain curves by tensile testing of thin metallic films on polyimide foils. Mater. Res. Soc. Symp. Proc. 505, 235 (1997).

    Article  Google Scholar 

  36. X. Chen, B.L. Kirsch, R. Senter, S.H. Tolbert, and V. Gupta, Tensile testing of thin films supported on compliant substrates. Mech. Mater. 41, 839 (2009).

    Article  Google Scholar 

  37. T. Filleter, S. Ryu, K. Kang, J. Yin, R.A. Bernal, K. Sohn, S. Li, J. Huang, W. Cai, and H.D. Espinosa, Nucleation-controlled distributed plasticity in penta-twinned silver nanowires. Small 8, 2986 (2012).

    Article  CAS  Google Scholar 

  38. K. Cao, Y. Han, H. Zhang, L. Gao, H. Yang, J. Chen, Y. Li, and Y. Lu, Size-dependent fracture behavior of silver nanowires. Nanotechnology 29, 295703 (2018).

    Article  Google Scholar 

  39. S.M. Bergin, Y. Chen, A.R. Rathmell, P. Charbonneau, Z. Li, and B.J. Wiley, Nanoscale the effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996 (2012).

    Article  CAS  Google Scholar 

  40. A. Madeira, D.T. Papanastasiou, T. Toupance, L. Servant, M. Tréguer-Delapierre, D. Bellet, and I.A. Goldthorpe, Rapid synthesis of ultra-long silver nanowires for high performance transparent electrodes. Nanoscale Adv. 2, 3804 (2020).

    Article  CAS  Google Scholar 

  41. C.F. Guo and Z. Ren, Flexible transparent conductors based on metal nanowire networks. Mater. Today 18, 143 (2015).

    Article  CAS  Google Scholar 

  42. Y. Huang, Y. Tian, C. Hang, Y. Liu, S. Wang, M. Qi, and J. Zhao, Self-limited nanosoldering of silver nanowires for high-performance flexible transparent heaters. ACS Appl. Mater. Interfaces 11(24), 21850 (2019).

    Article  CAS  Google Scholar 

  43. R. Wang, H. Zhai, T. Wang, X. Wang, Y. Cheng, L. Shi, and J. Sun, Silver nanowire ink for flexible circuit on textiles. Micromach. Nano Res. 9, 2138 (2016).

    Article  CAS  Google Scholar 

  44. K. Elen, H. Penxten, S. Nagels, W. Deferme, L. Lutsen, A. Hardy, and M.K. Van Bael, Screen-printing of flexible semi-transparent electrodes and devices based on silver nanowire networks. Nanotechnology 29, 425201 (2018).

    Article  CAS  Google Scholar 

  45. D. Du, X. Yang, Y. Yang, Y. Zhao, and Y. Wang, Silver nanowire ink for flexible circuit on textiles. Micromachines 10, 1 (2019).

    Article  Google Scholar 

  46. S. Ding, J. Ying, F. Chen, L. Fu, Y. Lv, S. Zhao, and G. Ji, Highly stretchable conductors comprising composites of silver nanowires and silver flakes. J. Nanopart. Res. 23, 111 (2021).

    Article  CAS  Google Scholar 

  47. A. Mohammed and M. Pecht, A stretchable and screen-printable conductive ink for stretchable electronics. Appl. Phys. Lett. 109, 184101 (2016).

    Article  Google Scholar 

  48. M.R. Ramli, S. Ibrahim, Z. Ahmad, I.S.Z. Abidin, and M.F. Ain, Stretchable conductive ink based on polysiloxane–silver composite and its application as a frequency reconfigurable patch antenna for wearable electronics. ACS Appl. Mater. Interfaces 11, 28033 (2019).

    Article  CAS  Google Scholar 

  49. A. Kumar, H. Saghlatoon, T.G. La, M.M. Honari, H. Charaya, H.A. Damis, R. Mirzavand, P. Mousavi, and H.J. Chung, A highly deformable conducting traces for printed antennas and interconnects: silver/fluoropolymer composite amalgamated by triethanolamine. Flex. Print. Electron. 2, 45001 (2017).

    Article  Google Scholar 

  50. N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, and T. Someya, Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant No. RGPIN-2019-04294), a Waterloo Institute of Nanotechnology (WIN) Nanofellowship, an Ontario Graduate Scholarship (OGS), and Bemis Company for providing TPU films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Goldthorpe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 291 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayaharman, M., Argasinski, H., Atkinson, J. et al. Enhancing and Understanding the High Stretchability of Printable, Conductive Silver Nanowire Ink. J. Electron. Mater. 52, 4634–4643 (2023). https://doi.org/10.1007/s11664-023-10417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10417-7

Keywords

Navigation