Skip to main content

Advertisement

Log in

MOF-Derived Octahedral-Shaped Fe3O4@C Composites for Lithium Storage

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Despite the high theoretical capacity of iron-based anode materials, they still perform poorly in electrical conductivity and volume expansion during the charge/discharge process, which can reduce battery life and cause deterioration in cycle performance. In the present study, iron-based metal–organic frameworks are synthesized through a simple co-precipitation method, and then heat-treated as a self-sacrificing template to obtain carbon-coated Fe3O4 of a porous ortho-octahedral structure. As revealed by electrochemical performance studies, this material maintains a high specific capacity, showing a reversible capacity of 1063 mAh/g and 896 mAh/g after 300 cycles at a current density of 0.5 A/g and 1 A/g. By analyzing the functional mechanism of surface carbon coating, it is demonstrated that the fast ion migration and high electrical conductivity required for fast charging and discharging are ensured by the octahedral and hierarchical void structure of the carbon framework. This study thus provides a reference for the design of high-performance electrode materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.K. Jena, A. AlFantazi, and A.T. Mayyas, Comprehensive review on concept and recycling evolution of lithium-ion batteries. Energy Fuels 35(22), 18257 (2021).

    Article  CAS  Google Scholar 

  2. Y.Y. Chen, W.Q. Du, B.X. Dou, J.H. Chen, and L. Hu, Metal-organic frameworks and their derivatives as electrode materials for Li-ion batteries: a mini review. CrystEngComm 24, 2729 (2022).

    Article  CAS  Google Scholar 

  3. L. Ding, M. Zeng, H. Wang, and X.B. Jiang, Synthesis of MIL-101-derived bimetal–organic framework and applications for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 32, 1778 (2021).

    Article  CAS  Google Scholar 

  4. Y. Li, Y. Xu, W. Yang, W. Shen, H. Xue, and H. Pang, MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 14(25), 1704435 (2018).

    Article  Google Scholar 

  5. H. Wang, Y. Bai, X.B. Jiang, and M. Zeng, Bimetal-organic framework derived from ZIF-67 as anodes for high performance lithium-ion batteries. Appl. Surf. Sci. 546, 149119 (2021).

    Article  CAS  Google Scholar 

  6. X.L. Xu, S. Cai, X.D. Song, Y.M. Zhao, G.W. Zhou, and Y. Liu, A mini review on the excellent nanostructures in electrochemical energy storage and conversion. NANO 17, 2230002 (2022).

    Article  CAS  Google Scholar 

  7. D. Jiang, M. Chen, H. Wang, G.M. Zeng, D.L. Huang, M. Cheng, Y. Liu, W.J. Xue, and Z.W. Wang, The application of different typological and structural MOFs-based materials for the dyes adsorption. Coord. Chem. Rev. 380, 471 (2019).

    Article  CAS  Google Scholar 

  8. J.W. Shin, M. Kim, J. Cirera, S. Chen, G.J. Halder, T.A. Yersak, and F. Paesani, MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion. J. Mater. Chem. A 3, 4738 (2015).

    Article  CAS  Google Scholar 

  9. J.Y. Ma, X.T. Guo, Y. Yan, H.G. Xue, and H. Pang, FeOx-based materials for electrochemical energy storage. Adv. Mater. 5, 1700986 (2018).

    Google Scholar 

  10. Y. Huang, Y.W. Li, R.S. Huang, and J.H. Yao, Ternary Fe2O3/Fe3O4/FeCO3 composite as a high-performance anode material for Lithium-ion batteries. J. Phys. Chem. C 123(20), 12614 (2019).

    Article  CAS  Google Scholar 

  11. F.X. Ma, H. Hu, H.B. Wu, C.Y. Xu, Z.C. Xu, L. Zhen, and X.W. Lou, Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent Lithium storage properties. Adv. Mater. 27, 4097 (2015).

    Article  CAS  Google Scholar 

  12. H. Zhu, Q.Y. Wei, S.J. Yu, P.C. Guo, J.K. Li, and Y.X. Wang, Synthesis of hollow nanostructures based on Iron oxides and their applications in lithium-ion batteries. J. Electron. Mater. 51, 4207 (2022).

    Article  CAS  Google Scholar 

  13. Y. Liang and W.L. Lu, Gamma-irradiation synthesis of Fe3O4/rGO nanocomposites as lithium-ion battery anodes. J. Mater. Sci. Mater. Electron. 31, 17075 (2020).

    Article  CAS  Google Scholar 

  14. S.H. Choi and Y.C. Kang, Fe3O4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium-ion batteries. Carbon 79, 58–66 (2014).

    Article  CAS  Google Scholar 

  15. Y.F. Li, Y.Y. Fu, S.H. Chen, Z.Z. Huang, L. Wang, and Y.H. Song, Porous Fe2O3/Fe3O4@Carbon octahedron arrayed on three-dimensional graphene foam for lithium-ion battery. Compos. Part B Eng. 171, 130–137 (2019).

    Article  CAS  Google Scholar 

  16. Q.T. Zhang, Y. Meng, M. Li, and X.M. Wang, Thiophene containing conjugated microporous polymers derived sulfur-enriched porous carbon supported Fe3O4 nanoparticles with superior lithium storage properties. J. Mater. Sci. Mater. Electron. 30, 1425 (2019).

    Article  CAS  Google Scholar 

  17. X.B. Jiang, M.Y. Shao, K. Li, L. Ding, and M. Zeng, Facile synthesis and lithium storage mechanism study of directly usable tin-based metal organic framework. J. Electroanal. Chem. 912, 116268 (2022).

    Article  CAS  Google Scholar 

  18. L. Miao, D.Z. Zhu, Y.H. Zhao, M.X. Liu, H. Duan, W. Xiong, Q.J. Zhu, L.C. Li, Y.K. Lv, and L.H. Gan, Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent-and self-template strategy for supercapacitors. Micropor. Mesopor. Mat. 253, 1–9 (2017).

    Article  CAS  Google Scholar 

  19. M. Barjasteh, M. Vossoughi, M. Bagherzadeh, and K.P. Bagheri, Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells. Int. J. Pharmaceut. 618, 121647 (2022).

    Article  CAS  Google Scholar 

  20. Y. Bai, M. Zeng, X. Wu, Y.Q. Zhang, J.W. Wen, and J. Li, Three-dimensional cage-like Si@ZIF-67 core–shell composites for high-performance lithium storage. Appl. Surf. Sci. 510, 145477 (2020).

    Article  CAS  Google Scholar 

  21. K. Wang, M.M. Chen, Z.H. He, L.A. Huang, S.S. Zhu, S.E. Pei, H.B. Shao, and J.M. Wang, Hierarchical Fe3O4@C nanospheres derived from Fe2O3/MIL-100 (Fe) with superior high-rate lithium storage performance. J. Alloy. Compd. 755, 154–162 (2018).

    Article  CAS  Google Scholar 

  22. X. Wu, Y. Bai, M. Zeng, and J. Li, Novel secondary assembled porous MgCo2O4 for high-performance lithium storage. Mater. Lett. 240, 225 (2019).

    Article  CAS  Google Scholar 

  23. L. Ding, X.Y. Zheng, R.C. Qin, P.Y. Guo, X.B. Jiang, and M. Zeng, Facile construction of C and TiO2 surface coating to improve the cycling stability of NiMn2O4 composite electrode materials. Mater. Lett. 323, 132561 (2022).

    Article  CAS  Google Scholar 

  24. K.B. Zhang, X.B. Jiang, M. Zeng, and B. Jing, Hydrothermal synthesis of three-dimensional hydrangea-like MoSe2@N-doped carbon anode material for high performance lithium ion batteries. J. Electroanal. Chem. 879, 114818 (2020).

    Article  CAS  Google Scholar 

  25. H. Zhao, L. Sheng, L. Wang, H. Xu, and X.M. He, The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Mater. 33, 360 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Sichuan Science and Technology Program (No. 2022NSFSC0334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zeng.

Ethics declarations

Conflict of interest

All the authors declare that they have no possible conflicts of interest.

Ethical Approval

All research was conducted in compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Qin, R., Xiong, Y. et al. MOF-Derived Octahedral-Shaped Fe3O4@C Composites for Lithium Storage. J. Electron. Mater. 52, 3311–3320 (2023). https://doi.org/10.1007/s11664-023-10301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10301-4

Keywords

Navigation