Skip to main content
Log in

2D Modeling of the Annealing Process After Ion Implantation in n-on-p HgCdTe

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A 2D model for the annealing process after ion implantation in HgCdTe was established. The 2D model was based on the diffusion equations of Hg vacancy and interstitial. Generation and annihilation of the Hg vacancy and interstitial were considered. The coupled diffusion equations combined with the boundary equation were solved simultaneously. Annealing temperature and annealing time dependence experiments were carried out to determine the key parameter and prove the effectiveness of the 2D model. This work provides an efficient 2D model of the annealing process in n-on-p HgCdTe, which makes the junction design of HgCdTe less costly and more accurate and gives fundamental guidance to the fabrication of small-pitch focal planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.D. Lawson, S. Nielsen, E.H. Putley, and A.S. Young, Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. J. Phys. Chem. Solids 9, 325 (1959).

    Article  CAS  Google Scholar 

  2. W. Lei, J. Antoszewski, and L. Faraone, Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl. Phys. Rev. 2, 041303 (2015).

    Article  Google Scholar 

  3. A. Rogalski, Mercury cadmium telluride photodiodes at the beginning of the next millennium (Review Paper). Def. Sci. J. 51, 5 (2001).

    Article  CAS  Google Scholar 

  4. P. Capper, Progress in bulk cadmium mercury telluride over the last 25 years. J. Mater. Sci. Mater. Electron. 26, 4380 (2015).

    Article  CAS  Google Scholar 

  5. A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, S.A. Dvoretsky, N.N. Mikhailov, G.Y. Sidorov, and M.V. Yakushev, Diffusion-limited dark currents in mid-wave infrared HgCdTe-based nBn structures with Al2O3 passivation. J. Phys. D. Appl. Phys. 53, 055107 (2020).

    Article  CAS  Google Scholar 

  6. H. Zhao, X. Chen, J. Lu, H. Shu, and W. Lu, The structural and electronic properties of amorphous HgCdTe from first-principles calculations. J. Phys. D. Appl. Phys. 47, 025304 (2014).

    Article  CAS  Google Scholar 

  7. R.D. Rajavel, D.M. Jamba, J.E. Jensen, O.K. Wu, P.D. Brewer, J.A. Wilson, J.L. Johnson, E.A. Patten, K. Kosai, J.T. Caulfield, and P.M. Goetz, Molecular beam epitaxial growth and performance of HgCdTe-based simultaneous-mode two-color detectors. J. Electron. Mater. 27, 747 (1998).

    Article  CAS  Google Scholar 

  8. X. Li, J. Chen, J. Chen, J. He, F. Yu, Z. Zhao, G. Li, X. Chen, and W. Lu, Controlling of avalanche dark carriers in realizing hot single photon detector. IEEE Electron Device Lett. 43, 922 (2022).

    Article  Google Scholar 

  9. S. Coffa, V. Privitera, F. Frisina, and F. Priolo, Three-dimensional concentration profiles of hybrid diffusers in crystalline silicon. J. Appl. Phys. 74, 195 (1993).

    Article  CAS  Google Scholar 

  10. F. Giannazzo, F. Priolo, V. Raineri, and V. Privitera, Two-dimensional profiling and size effects on the transient enhanced diffusion of ultralow-energy B implants in Si. Appl. Phys. Lett. 78, 598 (2001).

    Article  CAS  Google Scholar 

  11. S. Merchant, Arbitrary lateral diffusion profiles. IEEE Trans. Electron. Devices 42, 2226 (1995).

    Article  CAS  Google Scholar 

  12. F. Giannazzo, S. Mirabella, V. Raineri, D. De Salvador, E. Napolitani, A. Terrasi, A. Carnera, A.V. Drigo, and F. Priolo, Two-dimensional interstitial diffusion in silicon monitored by scanning capacitance microscopy. Mater. Sci. Eng. B 102, 148 (2003).

    Article  Google Scholar 

  13. L.O. Bubulac and W.E. Tennant, Role of Hg in junction formation in ion-implanted HgCdTe. Appl. Phys. Lett. 51, 355 (1987).

    Article  CAS  Google Scholar 

  14. C.R. Helms, J.L. Meléndez, H.G. Robinson, S. Holander, J. Hasan, and S. Halepete, Process simulation for HgCdTe infrared focal plane array flexible manufacturing. J. Electron. Mater. 24, 1137 (1995).

    Article  CAS  Google Scholar 

  15. M.A. Berding, A. Sher, and M. Van Schilfgaarde, Defect modeling studies in HgCdTe and CdTe. J. Electron. Mater. 24, 1127 (1995).

    Article  CAS  Google Scholar 

  16. J.L. Meléndez and C.R. Helms, Process modeling and simulation for Hg1-xCdxTe. Part I: status of stanford university mercury cadmium telluride process simulator. J. Electron. Mater. 24, 565 (1995).

    Article  Google Scholar 

  17. J.L. Meléndez and C.R. Helms, Process modeling and simulation for Hg1-xCdxTe. Part II: self-diffusion, interdiffusion, and fundamental mechanisms of point-defect interactions in Hg1-xCdxTe. J. Electron. Mater. 24, 573 (1995).

    Article  Google Scholar 

  18. H.G. Robinson, D.H. Mao, B.L. Williams, S. Holander-Gleixner, J.E. Yu, and C.R. Helms, Modeling ion implantation of HgCdTe. J. Electron. Mater. 25, 1336 (1996).

    Article  CAS  Google Scholar 

  19. S. Holander-Gleixner, B.L. Williams, H.G. Robinson, and C.R. Helms, Modeling of junction formation and drive-in in ion implanted HgCdTe. J. Electron. Mater. 26, 629 (1997).

    Article  CAS  Google Scholar 

  20. W.E. Tennant, D.J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D.E. Cooper, and E. Piquette, Small-pitch HgCdTe photodetectors. J. Electron. Mater. 43, 3041 (2014).

    Article  CAS  Google Scholar 

  21. J.M. Armstrong, M.R. Skokan, M.A. Kinch, and J.D. Luttmer, HDVIP five-micron pitch HgCdTe focal plane arrays. Infrared Technol. Appl. XL 9070, 907033 (2014).

    Google Scholar 

  22. S. Bisotto, J. Abergel, B. Dupont, A. Ferron, O. Mailliart, J.-A. Nicolas, S. Renet, F. Rochette, and J.-L. Santailler, Infrared Technology Applications XLV. edited by G. F. Fulop, C. M. Hanson, and B. F. Andresen (SPIE, 2019), p. 101.

  23. D. Chandra, H.F. Schaake, and M.A. Kinch, Junction stability in ion-implanted mercury cadmium telluride. J. Electron. Mater. 37, 1329 (2008).

    Article  CAS  Google Scholar 

  24. J. Baars, A. Hurrle, W. Rothemund, C.R. Fritzsche, and T. Jakobus, Boron ion implantation in Hg1–xCdxTe. J. Appl. Phys. 53, 1461 (1982).

    Article  CAS  Google Scholar 

  25. A. Kolodny and I. Kidron, Properties of ion-implanted junctions in mercury-cadmium-telluride. IEEE Trans. Electron. Devices 27, 37 (1980).

    Article  Google Scholar 

  26. R. Kumar, M.B. Dutt, R. Nath, R. Chander, and S.C. Gupta, Boron ion implantation in p-type Hg0. 8Cd0. 2Te. J. Appl. Phys. 68, 5564 (1990).

    Article  CAS  Google Scholar 

  27. G. Bahir and R. Kalish, Structure of ion-implanted and annealed Hg1–xCdxTe. J. Appl. Phys. 54, 3129 (1983).

    Article  CAS  Google Scholar 

  28. G.L. Destéfanis, Electrical doping of HgCdTe by ion implantation and heat treatment. J. Cryst. Growth 86, 700 (1988).

    Article  Google Scholar 

  29. B.L. Williams, H.G. Robinson, and C.R. Helms, Ion dependent interstitial generation of implanted mercury cadmium telluride. Appl. Phys. Lett. 71, 692 (1997).

    Article  CAS  Google Scholar 

  30. A.V. Voitsekhovskii, A.P. Kokhanenko, S.A. Shulga, and R. Smith, A model for the prediction of radiation defect profiles in the semiconductor target (HgCdTe) subjected to high power short pulsed ion beams. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 227, 531 (2005).

    Article  CAS  Google Scholar 

  31. A.V. Voitsekhovskii and N.K. Talipov, Low-temperature activation of ion-implanted boron and nitrogen ions in CdxHg1–xTeheteroepitaxial layers. Russ. Phys. J. 56, 763 (2013).

    Article  CAS  Google Scholar 

  32. N. Talipov and A. Voitsekhovskii, Annealing kinetics of radiation defects in boron-implanted p-Hg1–xCdxTe. Semicond. Sci. Technol. 33, 065009 (2018).

    Article  Google Scholar 

  33. A.V. Voitsekhovskii, A.P. Kokhanenko, S.A. Shulga, and R. Smith, Spatial distribution profiles of defects in mercury cadmium telluride after ion implantation. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 215, 109 (2004).

    Article  CAS  Google Scholar 

  34. H.R. Vydyanath, J.C. Donovan, and D.A. Nelson, Lattice defects in semiconducting Hg1− xCdxTe alloys III defect structure of undoped Hg0 6Cd0 4Te. J. Electrochem. Soc. 128, 2625 (1981).

    Article  CAS  Google Scholar 

  35. H.R. Vydyanath, Lattice defects in semiconducting Hg0.8Cd0.2Te alloys: I defect structure of undoped and copper doped Hg0. 8Cd0. 2Te. J. Electrochem. Soc. 128, 2609 (1981).

    Article  CAS  Google Scholar 

  36. M.L. Juncosa and D. Young, On the Crank–Nicolson procedure for solving parabolic partial differential equations. In: Mathematical Proceedings of the Cambridge Philosophical Society 53, 448 (1957). Cambridge University Press.

    Article  Google Scholar 

  37. H.R. Karfunkel, A computer program for the simulation of the temporal and spatial behavior of multi-component chemical reaction-diffusion systems in the plane. Comput. Biol. Med. 5, 29 (1975).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 62004203 and 62004206, the Shanghai Sailing Program under Grant Nos. 19YF1454700 and 20YF1456000, and the Innovation Special Fund from Shanghai Institute of Technical Physics under Grant No. CX-336.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhikai Gan or Chun Lin.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Z., Zhao, Y., Lin, C. et al. 2D Modeling of the Annealing Process After Ion Implantation in n-on-p HgCdTe. J. Electron. Mater. 52, 2871–2877 (2023). https://doi.org/10.1007/s11664-023-10253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10253-9

Keywords

Navigation