Skip to main content
Log in

Defect modeling studies in HgCdTe and CdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have used a quasichemical formalism to calculate the native point defect densities in x = 0.22 Hg1−xCdxTe and CdTe. The linearized muffin-tin orbital method, based on the local density approximation and including gradient corrections, has been used to calculate the electronic contribution to the defect reaction free energies, and a valence force field model has been used to calculate the changes to the vibration free energy when a defect is created. We find the double acceptor mercury vacancy is the dominant defect, in agreement with previous interpretations of experiments. The tellurium antisite, which is a donor, is also found to be an important defect in this material. The mercury vacancy tellurium antisite pair is predicted to be well bound and is expected to be important for tellurium antisite diffusion. We consider the possibilities that the tellurium antisite is the residual donor and a Shockley-Read recombination center in HgCdTe and suggestions for further experimental work are made. We predict that the cadmium vacancy, a double acceptor, is the dominant defect for low cadmium pressures, while the cadmium interstitial, a double donor, dominates at high cadmium pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CF.Wan, M.C. Chen, J.H. Tregilgas, T.W. Orent and J.D. Luttmer, 1993 MCT Workshop.

  2. H.R. Vydyanath, J. Ellsworth, J.J. Kennedy, B. Dean, C.J. Johnson, G.T. Neugebauer, J. Sepich and P.-K. Liao,J. Vac. Sci. Technol. B 10, 1476 (1992).

    Google Scholar 

  3. H.R. Vydyanath,J. Electrochem. Soc. 128, 2609 (1981).

    Article  CAS  Google Scholar 

  4. F.A. Kroger,The Chemistry of Imperfect Crystals (New York: J. Wiley & Sons, Inc., 1964).

    Google Scholar 

  5. T. Tung, M.H. Kalisher, A.P. Stevens and P.E. Herning,Mat. Res. Soc. Symp. Proc. 90, 321 (1987) and references therein.

    CAS  Google Scholar 

  6. O.K. Andersen, O. Jepsen and D. Glotzel,Highlights of Condensed Matter Theory, éd. F. Bassani et al. (Amsterdam, The Netherlands: North Holland, 1985), p. 59.

    Google Scholar 

  7. D. Langreth and D. Mehl,Phys. Rev. B 28, 1809 (1983).

    Article  CAS  Google Scholar 

  8. M. van Schilfgaarde, A.T. Paxton, M.A. Berding and M. Methfessel (in preparation).

  9. M.A. Berding, M. van Schilfgaarde and A. Sher,Phys. Rev. B 50, 1519 (1994).

    Article  CAS  Google Scholar 

  10. In Ref. 9, we assumed degeneracies of one, two, and one for the neutral, singly, and doubly ionized states of all donor and acceptors in HgCdTe. This is valid if only the a, states are occupied and the triply (sixfold including spin) degenerate t2 states remain unoccupied. (Recall that the point group of an undistorted point defect is Td.) If the t2 states are partially occupied, an additional degeneracy will be present that should be included in our calculations; this degeneracy was not included in Ref. 9 but will be added in this paper. For an undistorted defect with the full Td symmetry, this degeneracy arises from the partial occupation of the sixfold degenerate state (constrained to have a maximal number of spins paired); if the local symmetry is lowered due to a Jahn-Teller distortion (to point group D2d for one or two electrons in the t2 state, to point group C2v for three, four, or five electrons in the t2 state),11 this additional degeneracy arises from the extra degree of freedom present in the introduction of a locally preferred direction in space. Going through the counting, we obtain degeneracy factors of (6,3,6,3,6,1) for one to six electrons in the t2 state, respectively. Results reported here include these full degeneracy factors.

  11. See, for example, the discussion of symmetry-lowering distortions in silicon in G.A. Baraff, E.O. Kane and M. Schlüter,Phys. Rev. B 21, 5662 (1980).

    Article  CAS  Google Scholar 

  12. S.L. Holander and C.R. Helms, private communication.

  13. H.R. Vydyanath and C.H. Hiner,J. Appl. Phys. 65, 3080 (1989).

    Article  CAS  Google Scholar 

  14. G.L. Hansen and J.L. Schmit,J. Appl. Phys. 54,1639 (1983).

    Article  CAS  Google Scholar 

  15. G.L. Hansen, J.L. Schmit and T.N. Casselman,J. Appl. Phys. 53, 7099 (1982).

    Article  CAS  Google Scholar 

  16. H.F. Schaake, J.H. Tregilgas, J.D. Beck, M.A. Kinch and B.E. Gnade,J. Vac. Sci. Technol. A 3,143 (1985); H.F. Schaake,J. Electron. Mater. 14, 513 (1985).

    Article  CAS  Google Scholar 

  17. J.L. Meléndez and C.R. Helms,J. Electron. Mater. 22, 999 (1993).

    Google Scholar 

  18. See, for example, R. Sporken, M.D. Lange, S. Sivanathan and J.P. Faurie,Appl. Phys. Lett. 59, 81 (1991).

    Article  CAS  Google Scholar 

  19. C.E. Jones, V. Nair and D.L. Polla,Appl. Phys. Lett. 39, 248 (1981).

    Article  CAS  Google Scholar 

  20. C.E. Jones, V. Nair, J. Lindquist and D.L. Polla,J. Vac. Sci. Technol. 21, 187 (1982).

    Article  CAS  Google Scholar 

  21. C.E. Jones, K. James, J. Merz, R. Braunstein, M. Burd, M. Eetemadi, S. Hutton and J. Drumheller,J. Vac. Sci. Technol. A 3, 131 (1985).

    Article  CAS  Google Scholar 

  22. R. Schiebel and D. Bartholomew,J. Electron. Mater. 24,1299 (1995).

    CAS  Google Scholar 

  23. See, for example, D.A. Stevenson and M.-F.S. Tang,J. Vac. Sci. Technol. B 9, 1615 (1991).

    Article  CAS  Google Scholar 

  24. C.L. Littler, E. Maldonado, X.N. Song, Z. Yu, J.L. Elkind, D.G. Seiler and J.R. Lowney,J. Vac. Sci. Technol. B 10,1466 (1992).

    Article  CAS  Google Scholar 

  25. J.L. Elkind,J. Vac. Sci. Technol. B 10, 1460 (1992).

    Article  CAS  Google Scholar 

  26. W.C. Hughes, M.L. Swanson and J.C. Austin,Appl. Phys. Lett. 59, 938 (1991);J. Electron. Mater. 22, 1011 (1993).

    Article  CAS  Google Scholar 

  27. Because of the low zinc concentrations, our results should be applicable to x = 0.04 Cd1−xZnxTe, which is the more recent substrate of choice for LWIR Hg0.8Cd0.2Te devices.

  28. The Jahn-Teller distortion most certainly exists at low temperatures. At high temperatures corresponding to liquid phase growth, these disortions may get washed out by thermal vibrations in the lattice. We are currently examining this issue.

  29. P. Höschl, R. Grill, J. Franc, P. Moravec and E. Belas,Mat. Sci. and Engr. B16, 215 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berding, M.A., Sher, A. & Van Schilfgaarde, M. Defect modeling studies in HgCdTe and CdTe. J. Electron. Mater. 24, 1127–1135 (1995). https://doi.org/10.1007/BF02653064

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02653064

Key words

Navigation