Skip to main content
Log in

Recent Advances in the Development of Flexible Sensors: Mechanisms, Materials, Performance Optimization, and Applications

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Different from traditional rigid sensors based on silicon substrates, flexible sensors are suitable for irregularly shaped surfaces and complex measurement situations that need to be embedded in curved surfaces. Due to high flexibility and stretchability, flexible sensors are extensively served as personalized health surveillance and implantable biomedical devices. This paper reviews the latest breakthrough in flexible electronics, including new materials, fabrication strategies, and properties, emphasizing various applications of flexible sensors based on different material designs in health monitoring systems. In addition, the simultaneous transmission and optimization of signals from the human body to the detector, excellent stretchability, transparency, and biocompatibility give attractive prospects for wearable electronics with functions that infinitely tend to resemble real human skin or other skin. Finally, we discuss challenges the flexible sensing systems must rise to and look forward to the development prospect. With the rapid development in the field of flexible strain sensors, the practicality of their large-scale manufacture with a certain commercial and practical value is becoming a trend and an urgent need.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. J. Gu, Y. Tomioka, K. Kida, Y. Xiao, I. Saito, M. Okazaki et al., Measurement of Optical Reflection and Temperature Changes After Blood Occlusion Using a Wearable Device. Sci. Rep. 10, 1–13 (2020).

    Article  Google Scholar 

  2. Y. Yao, J. Chen, Y. Guo, T. Lv, Z. Chen, N. Li et al., Integration of Interstitial Fluid Extraction and Glucose Detection in One Device For Wearable Non-Invasive Blood Glucose Sensors. Biosens. Bioelectron. 179, 113078 (2021).

    Article  CAS  Google Scholar 

  3. Q. Wu, Y. Qiao, R. Guo, S. Naveed, T. Hirtz, X. Li et al., Triode-Mimicking Graphene Pressure Sensor With Positive Resistance Variation for Physiology and Motion Monitoring. ACS Nano 14, 10104–10114 (2020).

    Article  CAS  Google Scholar 

  4. S. Yang, C. Li, X. Chen, Y. Zhao, H. Zhang, N. Wen et al., Facile Fabrication of High-Performance Pen Ink-Decorated Textile Strain Sensors for Human Motion Detection. ACS Appl. Mater. Interfaces. 12, 19874–19881 (2020).

    Article  CAS  Google Scholar 

  5. K.K. Kim, I. Ha, M. Kim, J. Choi, P. Won, S. Jo et al., A Deep-Learned Skin Sensor Decoding the Epicentral Human Motions. Nat. Commun. 11, 1–8 (2020).

    Google Scholar 

  6. F. Arab Hassani, H. Jin, T. Yokota, T. Someya, and N. Thakor, Soft Sensors for a Sensing-Actuation System With High Bladder Voiding Efficiency. Sci Adv. 6, eaba0412 (2020).

    Article  CAS  Google Scholar 

  7. S.A. Dual, B. Llerena Zambrano, S. Sündermann, N. Cesarovic, M. Kron, K. Magkoutas et al., Continuous Heart Volume Monitoring by Fully Implantable Soft Strain Sensor. Adv. Healthc. Mater. 9, 2000855 (2020).

    Article  CAS  Google Scholar 

  8. G. Su, J. Cao, X. Zhang, Y. Zhang, S. Yin, L. Jia et al., Human-Tissue-Inspired Anti-Fatigue-Fracture Hydrogel for a Sensitive Wide-Range Human–Machine Interface. J. Mater. Chem. A. 8, 2074–2082 (2020).

    Article  CAS  Google Scholar 

  9. H. Wu, G. Yang, K. Zhu, S. Liu, W. Guo, Z. Jiang et al., Materials, Devices, AND Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human–Machine Interfaces. Adv Sci. 8, 2001938 (2021).

    Article  CAS  Google Scholar 

  10. Y. Zhang, N. Li, Y. Xiang, D. Wang, P. Zhang, Y. Wang et al., A Flexible Non-Enzymatic Glucose Sensor Based on Copper Nanoparticles Anchored on Laser-Induced Graphene. Carbon 156, 506–513 (2020).

    Article  CAS  Google Scholar 

  11. N. Thakur, M. Kumar, S.D. Adhikary, D. Mandal, and T.C. Nagaiah, PVIM–Co 5 POM/MNC Composite as a Flexible Electrode for the Ultrasensitive and Highly Selective Non-Enzymatic Electrochemical Detection of Cholesterol. Chem. Commun. 55, 5021–5024 (2019).

    Article  CAS  Google Scholar 

  12. H.Y.Y. Nyein, W. Gao, Z. Shahpar, S. Emaminejad, S. Challa, K. Chen et al., A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca2+ and pH. ACS Nano 10, 7216–7224 (2016).

    Article  CAS  Google Scholar 

  13. M. Gwiazda, A. Kaushik, A. Chlanda, E. Kijeńska-Gawrońska, J. Jagiełło, K. Kowiorski et al., A Flexible Immunosensor Based on the Electrochemically rGO with Au SAM Using Half-Antibody for Collagen Type I Sensing. Appl Surf Sci. Adv. 9, 100258 (2022).

    Article  Google Scholar 

  14. B. Nagar, M. Balsells, A. De La Escosura-Muñiz, P. Gomez-Romero, and A. Merkoçi, Fully Printed One-Step Biosensing Device Using Graphene/AuNPs Composite. Biosens. Bioelectron. 129, 238–244 (2019).

    Article  CAS  Google Scholar 

  15. Z. Zhai, X. Zhang, J. Wang, H. Li, Y. Sun, X. Hao et al., Washable and Flexible Gas Sensor Based on UiO-66-NH2 Nanofibers Membrane for Highly Detecting SO2. Chem. Eng. J. 428, 131720 (2022).

    Article  CAS  Google Scholar 

  16. V.R. Naganaboina and S.G. Singh, Graphene-CeO2 based flexible gas sensor: monitoring of low ppm CO gas with high selectivity at room temperature. Appl. Surf. Sci. 563, 150272 (2021).

    Article  CAS  Google Scholar 

  17. X. Yang, J. Liu, D. Fan, J. Cao, X. Huang, Z. Zheng et al., Scalable Manufacturing of Real-Time Self-Healing Strain Sensors Based on Brominated Natural Rubber. Chem. Eng. J. 389, 124448 (2020).

    Article  Google Scholar 

  18. Z. Wang, Y. Liu, D. Zhang, K. Zhang, C. Gao, and Y. Wu, Tough, Stretchable and Self-Healing C-MXenes/PDMS Conductive Composites as Sensitive Strain Sensors. Compos. Sci. Technol. 216, 109042 (2021).

    Article  CAS  Google Scholar 

  19. J. Xu, G. Wang, Y. Wu, X. Ren, and G. Gao, Ultrastretchable Wearable Strain and Pressure Sensors Based on Adhesive, Tough, and Self-Healing Hydrogels for Human Motion Monitoring. ACS Appl. Mater. Interfaces. 11, 25613–25623 (2019).

    Article  CAS  Google Scholar 

  20. D. Lei, Q. Zhang, N. Liu, T. Su, L. Wang, Z. Ren et al., An Ion Channel-Induced Self-Powered Flexible Pressure Sensor Based on Potentiometric Transduction Mechanism. Adv. Func. Mater. 32, 2108856 (2022).

    Article  CAS  Google Scholar 

  21. D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi, and L. Yu, Electrospinning of Flexible Poly (vinyl alcohol)/MXene Nanofiber-Based Humidity Sensor Self-Powered by Monolayer Molybdenum Diselenide Piezoelectric Nanogenerator. Nano-micro letters. 13, 1–13 (2021).

    Article  Google Scholar 

  22. M. Qu, Y. Qin, Y. Sun, H. Xu, D.W. Schubert, K. Zheng et al., Biocompatible, Flexible Strain Sensor Fabricated with Polydopamine-Coated Nanocomposites of Nitrile Rubber and Carbon Black. ACS Appl. Mater. Interf. 12, 42140–42152 (2020).

    Article  CAS  Google Scholar 

  23. Y. Zhang, S. Liu, Y. Miao, H. Yang, X. Chen, X. Xiao et al., Highly Stretchable and Sensitive Pressure Sensor Array Based on Icicle-Shaped Liquid Metal Film Electrodes. ACS Appl. Mater. Interfaces. 12, 27961–27970 (2020).

    Article  CAS  Google Scholar 

  24. Z. You, H. Liu, Y. Xu, Z. Ma, and G. Qin, A Flexible Monolithic Integrated Silicon Low Noise Amplifier on Plastic Substrate. J Phys D Appl Phys 54, 1101 (2021).

    Article  Google Scholar 

  25. H. Fan, G. Li, S. Deng, Y. Xu, Y. Qin, Y. Liu et al., A High Gain Low-Noise Amplifier Based on ITO-Stabilized ZnO Thin-film Transistors. IEEE Trans. Electron Devices 67, 5537–5543 (2020).

    Article  CAS  Google Scholar 

  26. S. Elsaegh, C. Veit, U. Zschieschang, M. Amayreh, F. Letzkus, H. Sailer et al., Low-Power Organic Light Sensor Array Based On Active-Matrix Common-Gate Transimpedance Amplifier On Foil For Imaging Applications. IEEE J. Solid-State Circuits 55, 2553–2566 (2020).

    Article  Google Scholar 

  27. C. Fernandes, A. Santa, Â. Santos, P. Bahubalindruni, J. Deuermeier, R. Martins et al., A Sustainable Approach to Flexible Electronics With Zinc-Tin Oxide Thin-Film Transistors. Adv Electr Mater. 4, 1800032 (2018).

    Article  Google Scholar 

  28. Y. Xiao, S. Jiang, Y. Li, and W. Zhang, Screen-Printed Flexible Negative Temperature Coefficient Temperature Sensor Based On Polyvinyl Chloride/Carbon Black Composites. Smart Mater. Struct. 30, 025035 (2021).

    Article  CAS  Google Scholar 

  29. M. Hu, Y. Gao, Y. Jiang, H. Zeng, S. Zeng, M. Zhu et al., High-Performance Strain Sensors Based on Bilayer Carbon Black/PDMS Hybrids. Adv Comp Hybr Mater. 4, 514–520 (2021).

    Article  CAS  Google Scholar 

  30. M. Go, X. Qi, P. Matteini, B. Hwang, and S. Lim, High Resolution Screen-Printing of Carbon Black/Carbon Nanotube Composite for Stretchable and Wearable Strain Sensor With Controllable Sensitivity. Sens. Actuat, A 332, 113098 (2021).

    Article  CAS  Google Scholar 

  31. Y. Wang, W. Li, Y. Zhou, L. Jiang, J. Ma, S. Chen et al., Fabrication of High-Performance Wearable Strain Sensors by Using CNTs-Coated Electrospun Polyurethane Nanofibers. J. Mater. Sci. 55, 12592–12606 (2020).

    Article  CAS  Google Scholar 

  32. X. Liu, B. Wei, F.I. Farha, W. Liu, W. Li, Y. Qiu et al., Densely Packed, Highly Strain Sensitive Carbon Nanotube Composites with Sufficient Polymer Penetration (Armsterdam: Elsevier, 2020).

    Book  Google Scholar 

  33. W.-Y. Ko, L.-T. Huang, and K.-J. Lin, Green Technique Solvent-free Fabrication of Silver Nanoparticle–Carbon Nanotube Flexible Films for Wearable Sensors. Sens. Actuators, A 317, 112437 (2021).

    Article  CAS  Google Scholar 

  34. L. Zhang, X. Zhang, L. Xu, D. Wang, X. Lu, and A. Zhang, Semi-embedded Robust MXene/AgNW Sensor with Self-Healing, High Sensitivity and a Wide Range for Motion Detection. Chem Eng J. 434, 134751 (2022).

    Article  CAS  Google Scholar 

  35. S.E. Elashery, N.F. Attia, and H. Oh, Design and Fabrication of Novel Flexible Sensor Based on 2D Ni-MOF Nanosheets as a Preliminary Step Toward Wearable Sensor for Onsite Ni (II) Ions Detection in Biological and Environmental Samples. Anal. Chim. Acta 1197, 339518 (2022).

    Article  CAS  Google Scholar 

  36. J. Chen, J. Zhang, Z. Luo, J. Zhang, L. Li, Y. Su et al., Superelastic, Sensitive, and Low Hysteresis Flexible Strain Sensor Based on Wave-Patterned Liquid Metal for Human Activity Monitoring. ACS Appl. Mater. Interf. 12, 22200–22211 (2020).

    Article  CAS  Google Scholar 

  37. Z. Zhang, L. Tang, C. Chen, H. Yu, H. Bai, L. Wang et al., Liquid Metal-Created Macroporous Composite Hydrogels with Self-Healing Ability and Multiple Sensations as Artificial Flexible Sensors. J Mater Chem A. 9, 875–883 (2021).

    Article  CAS  Google Scholar 

  38. J. Xu, H. Guo, H. Ding, Q. Wang, Z. Tang, Z. Li et al., Printable and Recyclable Conductive Ink Based on a Liquid Metal with Excellent Surface Wettability for Flexible Electronics. ACS Appl. Mater. Interf. 13, 7443–7452 (2021).

    Article  CAS  Google Scholar 

  39. M. Zhang, G. Li, L. Huang, P. Ran, J. Huang, M. Yu et al., Versatile Fabrication of Liquid Metal Nano-Ink Based Flexible Electronic Devices. Appl. Mater. Today 22, 100903 (2021).

    Article  Google Scholar 

  40. J. Sun, H. Du, Z. Chen, L. Wang, and G. Shen, MXene Quantum Dot Within Natural 3D Watermelon Peel Matrix for Biocompatible Flexible Sensing Platform. Nano Resear (2021). https://doi.org/10.1007/s12274-021-3967-x.

    Article  Google Scholar 

  41. Y. Zhang, L. Wang, L. Zhao, K. Wang, Y. Zheng, Z. Yuan et al., Flexible Self-Powered Integrated Sensing System with 3D Periodic Ordered Black Phosphorus@ MXene Thin-Films. Adv. Mater. 33, 2007890 (2021).

    Article  CAS  Google Scholar 

  42. Y. Wang, Y. Yue, F. Cheng, Y. Cheng, B. Ge, N. Liu et al., Ti3C2T x MXene-Based Flexible Piezoresistive Physical Sensors. ACS Nano 16, 1734–1758 (2022).

    Article  CAS  Google Scholar 

  43. D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang, L. Zhao et al., Biomimetic, Biocompatible and Robust Silk Fibroin-MXene Film with Stable 3D Cross-Link Structure for Flexible Pressure Sensors. Nano Energy 78, 105252 (2020).

    Article  CAS  Google Scholar 

  44. Y. Lu, X. Qu, W. Zhao, Y. Ren, W. Si, W. Wang et al., Highly Stretchable Elastic and Sensitive MXene-Based Hydrogel for Flexible Strain and Pressure Sensors. Research 2020, 1–13 (2020).

    Google Scholar 

  45. Y. Yuan, J. Zhou, G. Lu, J. Sun, and L. Tang, Highly Stretchable, Transparent, and Self-Adhesive Ionic Conductor for High-Performance Flexible Sensors. ACS Appl Poly Mater. 3, 1610–1617 (2021).

    Article  CAS  Google Scholar 

  46. Y. Peng, B. Yan, Y. Li, J. Lan, L. Shi, and R. Ran, Antifreeze and Moisturizing High Conductivity PEDOT/PVA Hydrogels for Wearable Motion Sensor. J. Mater. Sci. 55, 1280–1291 (2020).

    Article  CAS  Google Scholar 

  47. S. Cao, D. Yu, Y. Lin, C. Zhang, L. Lu, M. Yin et al., Light Propagation in Flexible Thin-Film Amorphous Silicon Solar Cells with Nanotextured Metal Back Reflectors. ACS Appl. Mater. Interf. 12, 26184–26192 (2020).

    Article  CAS  Google Scholar 

  48. T.-C. Chang, Y.-C. Tsao, P.-H. Chen, M.-C. Tai, S.-P. Huang, W.-C. Su et al., Flexible Low-Temperature Polycrystalline Silicon Thin-Film Transistors. Mater Today Adv. 5, 100040 (2020).

    Article  Google Scholar 

  49. S. Gao, X. Zhao, Q. Fu, T. Zhang, J. Zhu, F. Hou et al., Highly Transmitted Silver Nanowires-SWCNTs Conductive Flexible Film by Nested Density Structure and Aluminum-Doped Zinc Oxide Capping Layer for Flexible Amorphous Silicon Solar Cells. J. Mater. Sci. Technol. 126, 152–160 (2022).

    Article  Google Scholar 

  50. M. Buaki-Sogó, L. García-Carmona, M. Gil-Agustí, M. García-Pellicer, and A. Quijano-López, Flexible and Conductive Bioelectrodes Based on Chitosan-Carbon Black Membranes: Towards the Development of Wearable Bioelectrodes. Nanomaterials 11, 2052 (2021).

    Article  Google Scholar 

  51. F. Mazzara, B. Patella, C. D’Agostino, M.G. Bruno, S. Carbone, F. Lopresti et al., PANI-Based Wearable Electrochemical Sensor for pH Sweat Monitoring. Chemosensors. 9, 169 (2021).

    Article  CAS  Google Scholar 

  52. M.-S. Suen, Y.-C. Lin, and R. Chen, A Flexible Multifunctional Tactile Sensor Using Interlocked Zinc Oxide Nanorod Arrays for Artificial Electronic Skin. Sens. Actuators, A 269, 574–584 (2018).

    Article  CAS  Google Scholar 

  53. X. Hou, Y. Zhou, Y. Liu, L. Wang, and J. Wang, Coaxial electrospun flexible PANI//PU fibers as highly sensitive pH wearable sensor. J. Mater. Sci. 55, 16033–16047 (2020).

    Article  CAS  Google Scholar 

  54. G. Wang, K. Huang, Z. Liu, Y. Du, X. Wang, H. Lu et al., Flexible, low-voltage, and n-type infrared organic phototransistors with enhanced photosensitivity via interface trapping effect. ACS Appl. Mater. Interfaces. 10, 36177–36186 (2018).

    Article  CAS  Google Scholar 

  55. J.C. Huang, Carbon Black Filled Conducting Polymers and Polymer Blends. Adv Poly Tech: J Poly Process Instit. 21, 299–313 (2002).

    Article  CAS  Google Scholar 

  56. J. Shintake, Y. Piskarev, S.H. Jeong, and D. Floreano, Ultrastretchable Strain Sensors Using Carbon Black-Filled Elastomer Composites and Comparison of Capacitive Versus Resistive Sensors. Adv Mater Technol. 3, 1700284 (2018).

    Article  CAS  Google Scholar 

  57. X. Wang, X. Liu, and D.W. Schubert, Highly Sensitive Ultrathin Flexible Thermoplastic Polyurethane/Carbon Black Fibrous Film Strain Sensor with Adjustable Scaffold Networks. Nano-micro Lett. 13, 1–19 (2021).

    Article  Google Scholar 

  58. Z. Wang, Q. Zhang, Y. Yue, J. Xu, W. Xu, X. Sun et al., 3D Printed Graphene/Polydimethylsiloxane Composite for Stretchable Strain Sensor with Tunable Sensitivity. Nanotechnology 30, 345501 (2019).

    Article  CAS  Google Scholar 

  59. T. Yu, D. Zhang, Y. Wu, S. Guo, F. Lei, Y. Li et al., Graphene Foam Pressure Sensor Based on Fractal Electrode With High Sensitivity And Wide Linear Range. Carbon 182, 497–505 (2021).

    Article  CAS  Google Scholar 

  60. J. Jia, G. Huang, J. Deng, and K. Pan, Skin-Inspired Flexible And High-Sensitivity Pressure Sensors Based on rGO Films with Continuous-Gradient Wrinkles. Nanoscale 11, 4258–4266 (2019).

    Article  CAS  Google Scholar 

  61. K. Chen, W. Gao, S. Emaminejad, D. Kiriya, H. Ota, H.Y.Y. Nyein et al., Printed Carbon Nanotube Electronics And Sensor Systems. Adv. Mater. 28, 4397–4414 (2016).

    Article  CAS  Google Scholar 

  62. S. Iijima, Helical Microtubules of Graphitic Carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  63. S. Iijima and T. Ichihashi, Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature 363, 603–605 (1993).

    Article  CAS  Google Scholar 

  64. M. Abshirini, M. Charara, Y. Liu, M. Saha, and M.C. Altan, 3D Printing of Highly Stretchable Strain Sensors Based on Carbon Nanotube Nanocomposites. Adv. Eng. Mater. 20, 1800425 (2018).

    Article  Google Scholar 

  65. H. Xu, Y. Xie, E. Zhu, Y. Liu, Z. Shi, C. Xiong et al., Supertough and Ultrasensitive Flexible Electronic Skin Based on Nanocellulose/Sulfonated Carbon Nanotube Hydrogel Films. J Mater Chem A. 8, 6311–6318 (2020).

    Article  CAS  Google Scholar 

  66. Y. Xie, H. Xu, X. He, Y. Hu, E. Zhu, Y. Gao et al., Flexible Electronic Skin Sensor Based on Regenerated Cellulose/Carbon Nanotube Composite Films. Cellulose 27, 10199–10211 (2020).

    Article  CAS  Google Scholar 

  67. X. Zhou, W. Guo, J. Fu, Y. Zhu, Y. Huang, and P. Peng, Laser Writing of Cu/CuxO Integrated Structure on Flexible Substrate for Humidity Sensing. Appl. Surf. Sci. 494, 684–690 (2019).

    Article  CAS  Google Scholar 

  68. W. Ling, Y. Hao, H. Wang, H. Xu, and X. Huang, A Novel Cu-metal-Organic Framework with Two-Dimensional Layered Topology for Electrochemical Detection Using Flexible Sensors. Nanotechnology 30, 424002 (2019).

    Article  CAS  Google Scholar 

  69. H. Li, J. Zhang, J. Chen, Z. Luo, J. Zhang, Y. Alhandarish et al., A Supersensitive, Multidimensional Flexible Strain Gauge Sensor Based on Ag/PDMS for Human Activities Monitoring. Sci. Rep. 10, 1–9 (2020).

    Google Scholar 

  70. Y. Yang, C. Luo, J. Jia, Y. Sun, Q. Fu, and C. Pan, A Wrinkled Ag/CNTs-PDMS Composite Film for a High-Performance Flexible Sensor and its Applications in Human-Body Single Monitoring. Nanomaterials 9, 850 (2019).

    Article  CAS  Google Scholar 

  71. E. Aparicio-Martínez, A. Ibarra, I.A. Estrada-Moreno, V. Osuna, and R.B. Dominguez, Flexible Electrochemical Sensor Based On Laser Scribed Graphene/Ag Nanoparticles for Non-Enzymatic Hydrogen Peroxide Detection. Sens. Actuators, B Chem. 301, 127101 (2019).

    Article  Google Scholar 

  72. Z. Pei, Y. Liu, Q. Zhang, D. Zhao, J. Wang, Z. Yuan et al., Highly Sensitive, Stretchable Strain Sensor Based on Ag@ COOH-Functionalized CNTs for Stroke and Pronunciation Recognition. Adv Electr Mater. 5, 1900227 (2019).

    Article  Google Scholar 

  73. M.-S. Tsai, P.-G. Su, and C.-J. Lu, Fabrication of a Highly Sensitive Flexible Humidity Sensor Based on Pt/polythiophene/Reduced Graphene Oxide Ternary Nanocomposite Films Using a Simple One-Pot Method. Sens. Actuat, B Chem. 324, 128728 (2020).

    Article  CAS  Google Scholar 

  74. G. Cantarella, V. Costanza, A. Ferrero, R. Hopf, C. Vogt, M. Varga et al., Design of Engineered Elastomeric Substrate for Stretchable Active Devices and Sensors. Adv. Func. Mater. 28, 1705132 (2018).

    Article  Google Scholar 

  75. X. Hui, X. Xuan, J. Kim, and J.Y. Park, A Highly Flexible and Selective Dopamine Sensor Based on Pt-Au Nanoparticle-Modified Laser-Induced Graphene. Electrochim. Acta 328, 135066 (2019).

    Article  CAS  Google Scholar 

  76. M. Shin, J. Yoon, C. Yi, T. Lee, and J.-W. Choi, Flexible HIV-1 Biosensor Based on the Au/MoS2 Nanoparticles/Au Nanolayer on the PET Substrate. Nanomaterials 9, 1076 (2019).

    Article  CAS  Google Scholar 

  77. A. Kumar, M.O. Shaikh, R.R. Kumar, K. Dutt, C.-T. Pan, and C.-H. Chuang, Highly Sensitive, Flexible And Biocompatible Temperature Sensor Utilizing Ultra-long Au@ AgNW-Based Polymeric Nanocomposites. Nanoscale 14, 1742–1754 (2022).

    Article  CAS  Google Scholar 

  78. J. Dong, X. Zhao, E. Cao, Q. Han, L. Liu, W. Zhang et al., Flexible and Transparent Au Nanoparticle/Graphene/Au Nanoparticle ‘Sandwich’ Substrate for Surface-Enhanced Raman Scattering. Mater Today Nano. 9, 100067 (2020).

    Article  Google Scholar 

  79. Nyabadza A, Vázquez M, Coyle S, Fitzpatrick B, Brabazon D. Magnesium Nanoparticle Synthesis from Powders Via Pulsed Laser Ablation in Liquid for Wearables and Flexible Sensor Technologies. (2021).

  80. J. Wang, R. Suzuki, M. Shao, G. Fdr, and S. Shiratori, Capacitive Pressure Sensor with Wide-Range, Bendable, and High Sensitivity Based on the Bionic Komochi Konbu Structure and Cu/Ni Nanofiber Network. ACS Appl Mater Interf. 11, 11928–11935 (2019).

    Article  CAS  Google Scholar 

  81. M. Hilal and J.I. Han, Development of a Highly Flexible and Durable Fiber-Shaped Temperature Sensor Based on Graphene/Ni Double-Decked Layer for Wearable Devices. IEEE Sens. J. 20, 5146–5154 (2020).

    Article  CAS  Google Scholar 

  82. L.D.-A. Ho, V.B. Nam, and D. Lee, Flexible Ni/NiOx-Based Sensor for Human Breath Detection. Materials 15, 47 (2021).

    Article  Google Scholar 

  83. C. Yang, M. Guo, D. Gao, W. He, J. Feng, A. Zhang et al., A flexible Strain Sensor of Ba (Ti, Nb) O3/Mica with a Broad Working Temperature Range. Adv Mater Technol. 4, 1900578 (2019).

    Article  CAS  Google Scholar 

  84. S. Knobelspies, B. Bierer, A. Daus, A. Takabayashi, G.A. Salvatore, G. Cantarella et al., Photo-Induced Room-Temperature gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil. Sensors 18, 358 (2018).

    Article  Google Scholar 

  85. G. Ge, Y. Cai, Q. Dong, Y. Zhang, J. Shao, W. Huang et al., A Flexible Pressure Sensor Based on rGO/polyaniline Wrapped Sponge with Tunable Sensitivity for Human Motion Detection. Nanoscale 10, 10033–10040 (2018).

    Article  CAS  Google Scholar 

  86. Y.-g Kim, Y.J. Tak, H.J. Kim, W.-G. Kim, H. Yoo, and H.J. Kim, Facile Fabrication of Wire-Type Indium Gallium Zinc Oxide Thin-Film Transistors Applicable to Ultrasensitive Flexible Sensors. Scient Report. 8, 1–7 (2018).

    Google Scholar 

  87. J. Zhou, J. Yu, D. Bai, J. Lu, H. Liu, Y. Li et al., AgNW/stereocomplex-type Polylactide Biodegradable Conducting Film and its Application in Flexible Electronics. J. Mater. Sci.: Mater. Electron. 32, 6080–6093 (2021).

    CAS  Google Scholar 

  88. S.N. Kwon, S.W. Kim, I.G. Kim, Y.K. Hong, and S.I. Na, Direct 3D Printing of Graphene Nanoplatelet/Silver Nanoparticle-Based Nanocomposites for Multiaxial Piezoresistive Sensor Applications. Advanced Materials Technologies. 4, 1800500 (2019).

    Google Scholar 

  89. J. Wang, Y. Lou, B. Wang, Q. Sun, M. Zhou, and X. Li, Highly Sensitive, Breathable, and Flexible Pressure Sensor Based on Electrospun Membrane with Assistance of AgNW/TPU as Composite Dielectric Layer. Sensors. 20, 2459 (2020).

    Article  Google Scholar 

  90. X. Wang and J. Liu, Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications. Micromachines. 7, 206 (2016).

    Article  Google Scholar 

  91. Q. Gao, H. Li, J. Zhang, Z. Xie, J. Zhang, and L. Wang, Microchannel Structural Design for a Room-Temperature Liquid Metal Based Super-Stretchable Sensor. Sci. Rep. 9, 1–8 (2019).

    Google Scholar 

  92. Y. Wang, L. Zhu, and C. Du, Flexible Difunctional (Pressure and Light) Sensors Based on ZnO Nanowires/Graphene Heterostructures. Adv. Mater. Interfaces 7, 1901932 (2020).

    Article  CAS  Google Scholar 

  93. T. Teranishi and M. Miyake, Size Control of Palladium Nanoparticles and Their Crystal Structures. Chem. Mater. 10, 594–600 (1998).

    Article  CAS  Google Scholar 

  94. N.A. Luechinger, E.K. Athanassiou, and W.J. Stark, Graphene-Stabilized Copper Nanoparticles as an Air-Stable Substitute for Silver and Gold in Low-Cost Ink-Jet Printable Electronics. Nanotechnology 19, 445201 (2008).

    Article  Google Scholar 

  95. A. Kamyshny and S. Magdassi, Conductive Nanomaterials for Printed Electronics. Small 10, 3515–3535 (2014).

    Article  CAS  Google Scholar 

  96. A. Pajor-Świerzy, Y. Farraj, A. Kamyshny, and S. Magdassi, Air Stable Copper-Silver Core-Shell Submicron Particles: Synthesis and Conductive Ink Formulation. Colloids Surf., A 521, 272–280 (2017).

    Article  Google Scholar 

  97. C. Chen, Y. Jia, D. Jia, S. Li, S. Ji, and C. Ye, Formulation of Concentrated and Stable Ink of Silver Nanowires with Applications in Transparent Conductive Films. RSC Adv. 7, 1936–1942 (2017).

    Article  CAS  Google Scholar 

  98. B. Liu, X. Liu, Z. Yuan, Y. Jiang, Y. Su, J. Ma et al., A flexible NO2 Gas Sensor Based on Polypyrrole/Nitrogen-Doped Multiwall Carbon Nanotube Operating at Room Temperature. Sens. Actuators, B Chem. 295, 86–92 (2019).

    Article  CAS  Google Scholar 

  99. Z. Yu, G. Cai, X. Liu, and D. Tang, Platinum Nanozyme-Triggered Pressure-Based Immunoassay Using a Three-Dimensional Polypyrrole Foam-Based Flexible Pressure Sensor. ACS Appl. Mater. Interfaces. 12, 40133–40140 (2020).

    Article  CAS  Google Scholar 

  100. J. Chen, J. Liu, T. Thundat, and H. Zeng, Polypyrrole-Doped Conductive Supramolecular Elastomer with Stretchability, Rapid Self-Healing, and Adhesive Property for Flexible Electronic Sensors. ACS Appl. Mater. Interfaces. 11, 18720–18729 (2019).

    Article  CAS  Google Scholar 

  101. N. Nan, J. He, X. You, X. Sun, Y. Zhou, K. Qi et al., A Stretchable, Highly Sensitive, and Multimodal Mechanical Fabric Sensor Based on Electrospun Conductive Nanofiber Yarn for Wearable Electronics. Adv Mater Technol. 4, 1800338 (2019).

    Article  Google Scholar 

  102. C.U. Seo, Y. Yoon, D.H. Kim, S.Y. Choi, W.K. Park, J.S. Yoo et al., Fabrication of Polyaniline–Carbon Nano Composite for Application in Sensitive Flexible Acid Sensor. J. Ind. Eng. Chem. 64, 97–101 (2018).

    Article  CAS  Google Scholar 

  103. G. Luo, L. Xie, M. He, R. Jaisutti, and Z. Zhu, Flexible Fabric Gas Sensors Based On Reduced Graphene-Polyaniline Nanocomposite For Highly Sensitive NH 3 Detection at Room Temperature. Nanotechnology 32, 305501 (2021).

    Article  CAS  Google Scholar 

  104. A. Nasar and M.M. Rahman, Applications of Chitosan (CHI)-Reduced Graphene Oxide (rGO)-Polyaniline (PAni) Conducting Composite Electrode for Energy Generation in Glucose Biofuel Cell. Sci. Rep. 10, 1–12 (2020).

    Google Scholar 

  105. N.A. Khalid, J.A. Razak, H. Hasib, and M.M. Ismail, A Review on Polyaniline-Graphene Nanoplatelets (PANI/GNPs-DBSA) Based Nanocomposites Enhancing the Electrical Conductivity (Intelligent Manufacturing and Mechatronics: Springer, 2021), pp. 951–958.

    Google Scholar 

  106. D. Maity and R.T.R. Kumar, Polyaniline Anchored MWCNTs on Fabric for High Performance Wearable Ammonia Sensor. ACS sensors. 3, 1822–1830 (2018).

    Article  CAS  Google Scholar 

  107. S. Kundu, R. Majumder, R. Ghosh, M. Pradhan, S. Roy, P. Singha et al., Relative Humidity Sensing Properties of Doped Polyaniline-Encased Multiwall Carbon Nanotubes: Wearable and Flexible Human Respiration Monitoring Application. J. Mater. Sci. 55, 3884–3901 (2020).

    Article  CAS  Google Scholar 

  108. T. Wu, D. Lv, W. Shen, W. Song, and R. Tan, Trace-Level Ammonia Detection at Room Temperature Based on Porous Flexible Polyaniline/Polyvinylidene Fluoride Sensing Film with Carbon Nanotube Additives. Sens. Actuators, B Chem. 316, 128198 (2020).

    Article  CAS  Google Scholar 

  109. D. Maity, K. Rajavel, and R.T.R. Kumar, Polyvinyl Alcohol Wrapped Multiwall Carbon Nanotube (MWCNTs) Network On Fabrics for Wearable Room Temperature Ethanol Sensor. Sens. Actuators, B Chem. 261, 297–306 (2018).

    Article  CAS  Google Scholar 

  110. S. Cai, L. Chen, J. Zhang, Y. Ke, X. Fu, H. Yang et al., Facile Fabrication of PANI/Zn-tpps4 Flexible NH3 Sensor Based on the “Bridge” of Zn-tpps4. Sens. Actuators, B Chem. 321, 128476 (2020).

    Article  CAS  Google Scholar 

  111. C. Zhang, H. Li, A. Huang, Q. Zhang, K. Rui, H. Lin et al., Rational Design of a Flexible CNTs@ PDMS Film Patterned by Bio-Inspired Templates as a Strain Sensor and Supercapacitor. Small 15, 1805493 (2019).

    Article  Google Scholar 

  112. M.S. Irfan, Y.Q. Gill, S. Ullah, M.T. Naeem, F. Saeed, and M. Hashmi, Polyaniline-NBR Blends by In Situ Polymerization: Application as Stretchable Strain Sensors. Smart Mater. Struct. 28, 095024 (2019).

    Article  CAS  Google Scholar 

  113. D. Zhang, Z. Wu, and X. Zong, Flexible and Highly Sensitive H2S Gas Sensor Based on In-Situ Polymerized SnO2/rGO/PANI Ternary Nanocomposite with Application in Halitosis Diagnosis. Sens. Actuators, B Chem. 289, 32–41 (2019).

    Article  CAS  Google Scholar 

  114. S. Kulkarni, Y. Navale, S. Navale, F. Stadler, N. Ramgir, and V. Patil, Hybrid Polyaniline-WO3 Flexible Sensor: A Room Temperature Competence Towards NH3 gas. Sens. Actuators, B Chem. 288, 279–288 (2019).

    Article  CAS  Google Scholar 

  115. W. Chen, P. Yang, W. Shen, C. Zhu, D. Lv, R. Tan et al., Flexible room temperature ammonia gas sensor based on in suit polymerized PANI/PVDF porous composite film. J. Mater. Sci.: Mater. Electron. 31, 11870–11877 (2020).

    CAS  Google Scholar 

  116. Q. Wu, W. Shen, D. Lv, W. Chen, W. Song, and R. Tan, An Enhanced Flexible Room Temperature Ammonia Gas Sensor Based on GP-PANI/PVDF Multi-Hierarchical Nanocomposite Film. Sens. Actuators, B Chem. 334, 129630 (2021).

    Article  CAS  Google Scholar 

  117. G.J. Adekoya, R.E. Sadiku, and S.S. Ray, Nanocomposites of PEDOT: PSS with Graphene and its Derivatives for Flexible Electronic applications: A Review. Macromol. Mater. Eng. 306, 2000716 (2021).

    Article  CAS  Google Scholar 

  118. F.J. Romero, A. Rivadeneyra, M. Becherer, D.P. Morales, and N. Rodríguez, Fabrication and Characterization of Humidity Sensors Based on Graphene Oxide–PEDOT: PSS Composites on a Flexible Substrate. Micromachines. 11, 148 (2020).

    Article  Google Scholar 

  119. G. Zhang, Y. Zhao, Y. Liu, and J. Sun, A Flexible MEMS Ionization-Conducted Probe Sensor for Evaluating Detonation Velocity of Microcharges. Sens. Actuators, A 331, 112929 (2021).

    Article  CAS  Google Scholar 

  120. Y. Jiang, Q. He, J. Cai, D. Shen, X. Hu, and D. Zhang, Flexible Strain Sensor with Tunable Sensitivity via Microscale Electrical Breakdown in Graphene/Polyimide Thin Films. ACS Appl. Mater. Interfaces. 12, 58317–58325 (2020).

    Article  CAS  Google Scholar 

  121. Y. Zhu, Y. Wu, G. Wang, Z. Wang, Q. Tan, L. Zhao et al., A Flexible Capacitive Pressure Sensor Based on an Electrospun Polyimide Nanofiber Membrane. Org. Electron. 84, 105759 (2020).

    Article  CAS  Google Scholar 

  122. H.-U. Kim, H.Y. Kim, H. Seok, V. Kanade, H. Yoo, K.-Y. Park et al., Flexible MoS2–Polyimide Electrode for Electrochemical Biosensors and Their Applications for the Highly Sensitive Quantification of Endocrine Hormones: PTH, T3, and T4. Anal. Chem. 92, 6327–6333 (2020).

    Article  CAS  Google Scholar 

  123. N. Fathima, N. Pradeep, and J. Balakrishnan, Enhanced Optical And Electrical Properties Of Antimony Doped ZnO Nanostructures based MSM UV Photodetector Fabricated on a Flexible Substrate. Mater. Sci. Semicond. Process. 90, 26–31 (2019).

    Article  CAS  Google Scholar 

  124. S. Palit, K. Singh, B.-S. Lou, J.-L. Her, S.-T. Pang, and T.-M. Pan, Ultrasensitive Dopamine Detection of Indium-Zinc Oxide on PET Flexible Based Extended-Gate Field-Effect Transistor. Sens. Actuators, B Chem. 310, 127850 (2020).

    Article  CAS  Google Scholar 

  125. B.I. Armitage, K. Murugappan, M.J. Lefferts, A. Cowsik, and M.R. Castell, Conducting Polymer Percolation Gas Sensor on a Flexible Substrate. J Mater Chem C. 8, 12669–12676 (2020).

    Article  CAS  Google Scholar 

  126. Z. Wu, F. Yang, J. Yang, P. Yang, X. Zhang, T. Zhang et al., Durable and Flexible PET-Based Bending Sensor Obtained by Immobilizing Carbon Nanotubes via Surface Micro-Dissolution for Body Motion Monitoring. Macromol. Mater. Eng. 307, 2100502 (2022).

    Article  CAS  Google Scholar 

  127. E. Stucchi, G. Dell’Erba, P. Colpani, Y.H. Kim, and M. Caironi, Low-Voltage, Printed, All-Polymer Integrated Circuits Employing a Low-Leakage and High-Yield Polymer Dielectric. Advanced Electronic Materials. 4, 1800340 (2018).

    Article  Google Scholar 

  128. Z. Liu, Z. Yin, J. Wang, and Q. Zheng, Polyelectrolyte Dielectrics for Flexible Low-Voltage Organic Thin-Film Transistors in Highly Sensitive Pressure Sensing. Adv. Func. Mater. 29, 1806092 (2019).

    Article  Google Scholar 

  129. L. Lamanna, F. Rizzi, V.R. Bhethanabotla, and M. De Vittorio, Conformable Surface Acoustic Wave Biosensor for E-coli Fabricated on PEN Plastic Film. Biosens. Bioelectron. 163, 112164 (2020).

    Article  CAS  Google Scholar 

  130. L. Lamanna, F. Rizzi, V.R. Bhethanabotla, and M. De Vittorio, GHz AlN-Based Multiple Mode SAW Temperature Sensor Fabricated on PEN Substrate. Sens. Actuat., A 315, 112268 (2020).

    Article  CAS  Google Scholar 

  131. A. Hanif, T.Q. Trung, S. Siddiqui, P.T. Toi, and N.-E. Lee, Stretchable, Transparent, Tough, Ultrathin, and Self-Limiting Skin-Like Substrate for Stretchable Electronics. ACS Appl. Mater. Interfaces. 10, 27297–27307 (2018).

    Article  CAS  Google Scholar 

  132. J. Hwang, Y. Kim, H. Yang, and J.H. Oh, Fabrication of Hierarchically Porous Structured PDMS Composites and Their Application as a Flexible Capacitive Pressure Sensor. Compos. B Eng. 211, 108607 (2021).

    Article  CAS  Google Scholar 

  133. F. Wang, Y. Tan, H. Peng, F. Meng, and X. Yao, Investigations on the Preparation and Properties of High-Sensitive BaTiO3/MwCNTs/PDMS Flexible Capacitive Pressure Sensor. Mater. Lett. 303, 130512 (2021).

    Article  CAS  Google Scholar 

  134. Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao, N. Sun et al., A Flexible Ultra-Sensitive Triboelectric Tactile Sensor of Wrinkled PDMS/MXene Composite Films for E-Skin. Nano Energy 81, 105663 (2021).

    Article  CAS  Google Scholar 

  135. L. Cheng, R. Wang, X. Hao, and G. Liu, Design of Flexible Pressure Sensor Based on Conical Microstructure PDMS-Bilayer Graphene. Sensors. 21, 289 (2021).

    Article  CAS  Google Scholar 

  136. Y. He, L. Zhao, J. Zhang, L. Liu, H. Liu, and L. Liu, A breathable, Sensitive and Wearable Piezoresistive Sensor Based on Hierarchical Micro-Porous PU@ CNT Films for Long-Term Health Monitoring. Compos. Sci. Technol. 200, 108419 (2020).

    Article  CAS  Google Scholar 

  137. A. Kumar, P.-Y. Hsieh, M.O. Shaikh, R.R. Kumar, and C.-H. Chuang, Flexible Temperature Sensor Utilizing MWCNT Doped PEG-PU Copolymer Nanocomposites. Micromachines. 13, 197 (2022).

    Article  CAS  Google Scholar 

  138. S. Hou, Y. Shen, Y. Wang, X. Zhang, W. Luo, and J. Huang, Ingestible, Biofriendly, and Flexible Flour-Based Humidity Sensors with a Wide Sensing Range. ACS Appl. Electron. Mater. 3, 2798–2806 (2021).

    Article  CAS  Google Scholar 

  139. M.S. Gulsu, F. Bagci, S. Can, A.E. Yilmaz, and B. Akaoglu, Metamaterial-Based Sensor with a Polycarbonate Substrate for Sensing the Permittivity of Alcoholic Liquids in a WR-229 Waveguide. Sens. Actuators, A 312, 112139 (2020).

    Article  CAS  Google Scholar 

  140. B. Zhou, Y. Li, D. Zhang, G. Zheng, K. Dai, L. Mi et al., Interfacial Adhesion enhanced Flexible Polycarbonate/carbon Nanotubes Transparent Conductive Film for Vapor Sensing. Composites Communications. 15, 80–86 (2019).

    Article  Google Scholar 

  141. S. Tamura, J.K. Wyss, M.S. Sarwar, A. Bahi, J.D. Madden, and F.K. Ko, Woven Structure for Flexible Capacitive Pressure Sensors. MRS Advances. 5, 1029–1037 (2020).

    Article  CAS  Google Scholar 

  142. E.R. Cholleti, J. Stringer, M. Assadian, V. Battmann, C. Bowen, and K. Aw, Highly Stretchable Capacitive Sensor with Printed Carbon Black Electrodes on Barium Titanate Elastomer Composite. Sensors. 19, 42 (2018).

    Article  Google Scholar 

  143. R. Sha, N. Vishnu, and S. Badhulika, MoS2 Based ultra-low-cost, Flexible, Non-enzymatic and Non-invasive Electrochemical Sensor for Highly selective Detection of Uric acid in Human Urine Samples. Sens. Actuators, B Chem. 279, 53–60 (2019).

    Article  CAS  Google Scholar 

  144. R. Ishihara, M. Trifunovic, P. Sberna, and T. Shimoda, Printed Poly-Si TFTs on Paper for Beyond Plastic Electronics. ECS Trans. 86, 47 (2018).

    Article  CAS  Google Scholar 

  145. W. Deng, H. Huang, H. Jin, W. Li, X. Chu, D. Xiong et al., All-sprayed-Processable, Large-Area, and flexible Perovskite/MXene-Based Photodetector Arrays for Photocommunication. Advanced Optical Materials. 7, 1801521 (2019).

    Article  Google Scholar 

  146. L. Wang, M. Zhang, B. Yang, X. Ding, J. Tan, S. Song et al., Flexible, robust, and durable aramid fiber/CNT composite paper as a multifunctional sensor for wearable applications. ACS Appl. Mater. Interfaces. 13, 5486–5497 (2021).

    Article  CAS  Google Scholar 

  147. P. Zhu, Y. Kuang, Y. Wei, F. Li, H. Ou, F. Jiang et al., Electrostatic Self-Assembly Enabled Flexible Paper-Based Humidity Sensor with High Sensitivity and Superior Durability. Chem. Eng. J. 404, 127105 (2021).

    Article  CAS  Google Scholar 

  148. Y. Wu, S. Sun, A. Geng, L. Wang, C. Song, L. Xu et al., Using TEMPO-Oxidized-Nanocellulose Stabilized Carbon Nanotubes to Make Pigskin Hydrogel conductive as Flexible Sensor and Supercapacitor Electrode: Inspired from a Chinese Cuisine. Compos. Sci. Technol. 196, 108226 (2020).

    Article  CAS  Google Scholar 

  149. S. Chen, Y. Chen, D. Li, Y. Xu, and F. Xu, Flexible and Sensitivity-Adjustable Pressure Sensors Based on Carbonized Bacterial Nanocellulose/wood-Derived Cellulose Nanofibril Composite Aerogels. ACS Appl. Mater. Interfaces. 13, 8754–8763 (2021).

    Article  CAS  Google Scholar 

  150. L. Han, S. Cui, H.-Y. Yu, M. Song, H. Zhang, N. Grishkewich et al., Self-Healable Conductive Nanocellulose Nanocomposites for Biocompatible Electronic Skin Sensor Systems. ACS Appl. Mater. Interfaces. 11, 44642–44651 (2019).

    Article  CAS  Google Scholar 

  151. Q. Ma, B. Hao, and P.-C. Ma, Flexible Sensor Based on Polymer Nanocomposites Reinforced by Carbon Nanotube Foam Derivated from Cotton. Compos. Sci. Technol. 192, 108103 (2020).

    Article  CAS  Google Scholar 

  152. Y. Zheng, R. Yin, Y. Zhao, H. Liu, D. Zhang, X. Shi et al., Conductive MXene/Cotton Fabric Based Pressure Sensor with Both High Sensitivity and Wide Sensing Range for Human Motion Detection and E-skin. Chem. Eng. J. 420, 127720 (2021).

    Article  CAS  Google Scholar 

  153. F. Jin, D. Lv, W. Shen, W. Song, and R. Tan, High Performance Flexible and Wearable Strain Sensor Based on rGO and PANI Modified Lycra Cotton e-textile. Sens. Actuators, A 337, 113412 (2022).

    Article  CAS  Google Scholar 

  154. Y.X. Song, W.M. Xu, M.Z. Rong, and M.Q. Zhang, A Sunlight Self-healable Transparent Strain Sensor with high Sensitivity and Durability Based on a Silver Nanowire/Polyurethane Composite Film. Journal of Materials Chemistry A. 7, 2315–2325 (2019).

    Article  CAS  Google Scholar 

  155. P. Sobolčiak, A. Ali, M.K. Hassan, M.I. Helal, A. Tanvir, A. Popelka et al., 2D Ti3C2Tx (MXene)-Reinforced Polyvinyl Alcohol (PVA) Nanofibers with Enhanced Mechanical and Electrical Properties. PLoS ONE 12, e0183705 (2017).

    Article  Google Scholar 

  156. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon et al., Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    Article  CAS  Google Scholar 

  157. W. Huang, L. Hu, Y. Tang, Z. Xie, and H. Zhang, Recent Advances in Functional 2D Mxene-based Nanostructures for Next-Generation devices. Adv. Func. Mater. 30, 2005223 (2020).

    Article  CAS  Google Scholar 

  158. C. Ma, Q. Yuan, H. Du, M.-G. Ma, C. Si, and P. Wan, Multiresponsive MXene (Ti3C2T x)-Decorated Textiles for Wearable Thermal Management and Human Motion Monitoring. ACS Appl. Mater. Interfaces. 12, 34226–34234 (2020).

    Article  CAS  Google Scholar 

  159. S.H. Lee, W. Eom, H. Shin, R.B. Ambade, J.H. Bang, H.W. Kim et al., Room-Temperature, Highly Durable Ti3C2T x MXene/Graphene Hybrid Fibers for NH3 Gas Sensing. ACS Appl. Mater. Interfaces. 12, 10434–10442 (2020).

    Article  CAS  Google Scholar 

  160. S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, and J.Y. Park, Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition. ACS Appl. Mater. Interfaces. 12, 22212–22224 (2020).

    Article  CAS  Google Scholar 

  161. T. Tang, S. Wang, Y. Jiang, Z. Xu, Y. Chen, T. Peng et al., Flexible and Flame-Retarding Phosphorylated MXene/polypropylene Composites for Efficient Electromagnetic Interference Shielding. J. Mater. Sci. Technol. 111, 66–75 (2022).

    Article  Google Scholar 

  162. Y. Lee, S.J. Kim, Y.-J. Kim, Y. Lim, Y. Chae, B.-J. Lee et al., Oxidation-Resistant Titanium Carbide MXene Films. Journal of Materials Chemistry A. 8, 573–581 (2020).

    Article  CAS  Google Scholar 

  163. M. Naguib, R.R. Unocic, B.L. Armstrong, and J. Nanda, Large-Scale Delamination of Multi-Layers Transition metal Carbides and Carbonitrides “MXenes.” Dalton Trans. 44, 9353–9358 (2015).

    Article  CAS  Google Scholar 

  164. L. Ma, X. Lei, X. Guo, L. Wang, S. Li, T. Shu et al., Carbon Black/Graphene Nanosheet Composites for Three-Dimensional Flexible Piezoresistive Sensors. ACS Applied Nano Materials (2022). https://doi.org/10.1021/acsanm.2c01081.

    Article  Google Scholar 

  165. S. Yong and K. Aw, Multi-Layered Carbon-Black/Elastomer-Composite-Based Shielded Stretchable Capacitive Sensors for the Underactuated Robotic Hand. Robotics 11, 58 (2022).

    Article  Google Scholar 

  166. L. Huang, H. Wang, D. Zhan, and F. Fang, Flexible Capacitive Pressure Sensor Based on Laser–Induced Graphene and Polydimethylsiloxane Foam. IEEE Sens. J. 21, 12048–12056 (2021).

    Article  CAS  Google Scholar 

  167. J.-C. Wang, R.S. Karmakar, Y.-J. Lu, S.-H. Chan, M.-C. Wu, K.-J. Lin et al., Miniaturized Flexible Piezoresistive Pressure Sensors: Poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) Copolymers Blended with Graphene Oxide for Biomedical applications. ACS Appl. Mater. Interfaces. 11, 34305–34315 (2019).

    Article  CAS  Google Scholar 

  168. X. Wu, Z. Li, Y. Zhu, J. Wang, and S. Yang, Ultralight GO-Hybridized CNTs Aerogels with Enhanced Electronic and Mechanical Properties for Piezoresistive Sensors. ACS Appl. Mater. Interfaces. 13, 26352–26361 (2021).

    Article  CAS  Google Scholar 

  169. Liu F, Dai S, Jie C, Zhang Z, Cheng G, Ding J. CNTs based Capacitive Stretchable Pressure Sensor with Stable Performance. Sensors and Actuators A: Physical. 2022:113672.

  170. Shi J, Li H, Sun B, Zhao X, Ding G, Yang Z, editors. A flexible pressure sensor based on low-cost electroplated-Ni film induced cracking for wearable devices application. 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); 2018: IEEE.

  171. W.C. Liu and A.A. Watt, Solvodynamically Printed Silver Nanowire/Ethylene-co-vinyl Acetate Composite Films as Sensitive Piezoresistive Pressure Sensors. ACS Appl. Nano Mater. 4, 7905–7916 (2021).

    Article  CAS  Google Scholar 

  172. S. Hosseini, H. Hajghassem, and M.F. Ghazani, A Sensitive and Flexible Interdigitated Capacitive Strain Gauge Based on Carbon Nanofiber/PANI/Silicone Rubber Nanocomposite for Body Motion Monitoring. Mater Resear Expr (2022). https://doi.org/10.1088/2053-1591/ac7851.

    Article  Google Scholar 

  173. Kang B, Yan X, Zhao Z, Song S. Dual-Sensing, Stretchable, Fatigue-Resistant, Adhesive, and Conductive Hydrogels Used as Flexible Sensors for Human Motion Monitoring. Langmuir. 2022.

  174. Y. Gao, D. Liu, Y. Xie, Y. Song, E. Zhu, Z. Shi et al., Flexible and Sensitive Piezoresistive Electronic Skin Based on TOCN/PPy Hydrogel Films. J. Appl. Polym. Sci. 138, 51367 (2021).

    Article  CAS  Google Scholar 

  175. A. Pierre, S.E. Doris, R. Lujan, and R.A. Street, Monolithic Integration of Ion-Selective Organic Electrochemical Transistors with Thin Film Transistors on Flexible Substrates. Adv. Mater. Technol. 4, 1800577 (2019).

    Article  Google Scholar 

  176. D. Bhatt, S. Kumar, and S. Panda, Amorphous IGZO Field Effect Transistor Based Flexible Chemical and Biosensors for Label Free Detection. Flexible Print. Electr. 5, 014010 (2020).

    Article  CAS  Google Scholar 

  177. Y. Li, Y. Li, J. Chen, Z. Sun, Z. Li, X. Han et al., Full-Solution Processed All-Nanowire Flexible and Transparent Ultraviolet Photodetectors. J. Mater. Chem. C. 6, 11666–11672 (2018).

    Article  CAS  Google Scholar 

  178. A. Samouco, A. Marques, A. Pimentel, R. Martins, and E. Fortunato, Laser-Induced Electrodes Towards low-Cost Flexible UV ZnO Sensors. Flexible Print. Electr. 3, 044002 (2018).

    Article  CAS  Google Scholar 

  179. J. Sun, C. Shan, M. Zhao, and D. Jiang, Research on Piezo-Phototronic Effect in ZnO/AZO Heterojunction Flexible Ultraviolet Photodetectors. Optik 243, 167472 (2021).

    Article  CAS  Google Scholar 

  180. A. Sholehah, K. Karmala, N. Huda, L. Utari, N.L.W. Septiani, and B. Yuliarto, Structural Effect of ZnO-Ag Chemoresistive Sensor on Flexible Substrate for Ethylene Gas Detection. Sens. Actuat., A 331, 112934 (2021).

    Article  CAS  Google Scholar 

  181. A. Liu, S. Lv, L. Zhao, F. Liu, J. Wang, R. You et al., Room Temperature Flexible NH3 Sensor Based on Polyaniline Coated Rh-Doped SnO2 Hollow Nanotubes. Sens. Actuators, B Chem. 330, 129313 (2021).

    Article  CAS  Google Scholar 

  182. J.-H. Kim, J.-Y. Kim, A. Mirzaei, H.W. Kim, and S.S. Kim, Synergistic Effects of SnO2 and Au Nanoparticles Decorated on WS2 Nanosheets for Flexible, Room-Temperature CO Gas Sensing. Sens. Actuat, B Chem. 332, 129493 (2021).

    Article  CAS  Google Scholar 

  183. K.A. Stewart and J.F. Wager, Thin-film Transistor Mobility Limits Considerations. J. Soc. Inform. Display 24, 386–393 (2016).

    Article  CAS  Google Scholar 

  184. S.R. Thomas, P. Pattanasattayavong, and T.D. Anthopoulos, Solution-Processable Metal Oxide Semiconductors for Thin-Film Transistor Applications. Chem. Soc. Rev. 42, 6910–6923 (2013).

    Article  CAS  Google Scholar 

  185. R. Yao, Z. Zheng, Z. Fang, H. Zhang, X. Zhang, H. Ning et al., High-Performance Flexible Oxide TFTs: Optimization of a-IGZO Film by Modulating the Voltage Waveform of Pulse DC Magnetron Sputtering Without Post Treatment. J. Mater. Chem. C. 6, 2522–2532 (2018).

    Article  CAS  Google Scholar 

  186. H. Ning, X. Zeng, H. Zhang, X. Zhang, R. Yao, X. Liu et al., Transparent Flexible IGZO Thin Film Transistors Fabricated at Room Temperature. Membranes 12, 29 (2021).

    Article  Google Scholar 

  187. P. Gao, S-g Li, editors. The Effect of Improving the Ordering of P3HT Thin Films on the Performance of OFETs. 2021 IEEE 4th International Conference on Electronics Technology (ICET); 2021: IEEE.

  188. H. Zajaczkowska, L. Veith, W. Waliszewski, M.A. Bartkiewicz, M. Borkowski, P. Sleczkowski et al., Self-Aligned Bilayers for Flexible Free-Standing Organic Field-Effect Transistors. ACS Appl. Mater. Interf. 13, 59012–59022 (2021).

    Article  CAS  Google Scholar 

  189. Zhang J, Yu H, Tao K, editors. Flexible and Deformable Organic Field-Effect Transistor by Microelectronic Inkjet Printing. 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS); 2022: IEEE.

  190. X. Chen, L. Feng, P. Yu, C. Liu, J. Lan, Y.-H. Lin et al., Flexible Thermoelectric Films Based on Bi2Te3 Nanosheets and Carbon Nanotube Network with High n-type Performance. ACS Appl. Mater. Interfaces. 13, 5451–5459 (2021).

    Article  CAS  Google Scholar 

  191. C. Zhang, Q. Zhang, D. Zhang, M. Wang, Y. Bo, X. Fan et al., Highly Stretchable Carbon Nanotubes/Polymer Thermoelectric Fibers. Nano Lett. 21, 1047–1055 (2021).

    Article  CAS  Google Scholar 

  192. C. Yoon, M. Reghu, D. Moses, Y. Cao, and A. Heeger, Transports in Blends of Conducting Polymers. Synth. Met. 69, 255–258 (1995).

    Article  CAS  Google Scholar 

  193. A.M. Darwish, A. Muhammad, S.S. Sarkisov, P. Mele, S. Saini, J. Liu et al., Thermoelectric Properties of Al-doped ZnO Composite Films with Polymer Nanoparticles Prepared by Pulsed Laser Deposition. Compos. B Eng. 167, 406–410 (2019).

    Article  CAS  Google Scholar 

  194. B. Krause, A. Liguoro, and P. Pötschke, Blend Structure and N-Type Thermoelectric Performance of PA6/SAN and PA6/PMMA Blends Filled with Singlewalled Carbon Nanotubes. Nanomaterials 11, 1146 (2021).

    Article  CAS  Google Scholar 

  195. H. Xu, J. Liu, J. Zhang, G. Zhou, N. Luo, and N. Zhao, Flexible Organic/Inorganic Hybrid Near-Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring. Adv. Mater. 29, 1700975 (2017).

    Article  Google Scholar 

  196. H. Fang, K.J. Yu, C. Gloschat, Z. Yang, E. Song, C.-H. Chiang et al., Capacitively Coupled Arrays of Multiplexed Flexible Silicon Transistors for Long-Term Cardiac Electrophysiology. Nat. Biomed Eng. 1, 1–12 (2017).

    Article  Google Scholar 

  197. J. Li, E. Song, C.-H. Chiang, K.J. Yu, J. Koo, H. Du et al., Conductively Coupled Flexible Silicon Electronic Systems for Chronic Neural Electrophysiology. Proc. Natl. Acad. Sci. 115, E9542–E9549 (2018).

    Article  CAS  Google Scholar 

  198. G. Yoo, S.L. Choi, S.J. Park, K.-T. Lee, S. Lee, M.S. Oh et al., Flexible and Wavelength-Selective MoS2 Phototransistors With Monolithically Integrated Transmission Color Filters. Sci. Rep. 7, 1–7 (2017).

    Article  Google Scholar 

  199. Z. He, W. Chen, B. Liang, C. Liu, L. Yang, D. Lu et al., Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene And Porous Nylon Networks. ACS Appl. Mater. Interf. 10, 12816–12823 (2018).

    Article  CAS  Google Scholar 

  200. K. Ke, M. McMaster, W. Christopherson, K.D. Singer, and I. Manas-Zloczower, Highly Sensitive Capacitive Pressure Sensors Based on Elastomer Composites with Carbon Filler Hybrids. Compos. A Appl. Sci. Manuf. 126, 105614 (2019).

    Article  CAS  Google Scholar 

  201. A. Chortos, G.I. Koleilat, R. Pfattner, D. Kong, P. Lin, R. Nur et al., Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor and Electrodes. Adv. Mater. 28, 4441–4448 (2016).

    Article  CAS  Google Scholar 

  202. R.B. Mishra, S.M. Khan, S.F. Shaikh, A.M. Hussain, M.M. Hussain, editors. Low-cost foil/paper based touch mode pressure sensing element as artificial skin module for prosthetic hand. 2020 3rd IEEE International conference on soft robotics (RoboSoft); 2020: IEEE.

  203. B.C.-K. Tee, A. Chortos, A. Berndt, A.K. Nguyen, A. Tom, A. McGuire et al., A Skin-Inspired Organic Digital Mechanoreceptor. Science 350, 313–316 (2015).

    Article  CAS  Google Scholar 

  204. S.M. Khan, R. Mishra, N. Qaiser, A.M. Hussain, and M.M. Hussain, Diaphragm Shape Effect on the Performance of Foil-Based Capacitive Pressure Sensors. AIP Adv. 10, 015009 (2020).

    Article  CAS  Google Scholar 

  205. M. Li, J. Liang, X. Wang, and M. Zhang, Ultra-Sensitive Flexible Pressure Sensor Based on Microstructured Electrode. Sensors 20, 371 (2020).

    Article  Google Scholar 

  206. V. Palaniappan, S. Masihi, M. Panahi, D. Maddipatla, A.K. Bose, X. Zhang et al., Laser-Assisted Fabrication of a Highly Sensitive and Flexible Micro Pyramid-Structured Pressure Sensor for E-Skin Applications. IEEE Sens. J. 20, 7605–7613 (2020).

    Article  CAS  Google Scholar 

  207. Y. Luo, J. Shao, S. Chen, X. Chen, H. Tian, X. Li et al., Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays. ACS Appl. Mater. Interfaces. 11, 17796–17803 (2019).

    Article  CAS  Google Scholar 

  208. L. Ma, X. Shuai, Y. Hu, X. Liang, P. Zhu, R. Sun et al., A Highly Sensitive And Flexible Capacitive Pressure Sensor Based on a Micro-Arrayed Polydimethylsiloxane Dielectric Layer. J. Mater. Chem. C. 6, 13232–13240 (2018).

    Article  CAS  Google Scholar 

  209. X. Zeng, Z. Wang, H. Zhang, W. Yang, L. Xiang, Z. Zhao et al., Tunable, Ultrasensitive, and Flexible Pressure Sensors Based on Wrinkled Microstructures for Electronic Skins. ACS Appl. Mater. Interfaces. 11, 21218–21226 (2019).

    Article  CAS  Google Scholar 

  210. M. Louzazni, A. Khouya, A. Crăciunescu, K. Amechnoue, and M. Mussetta, Modelling and Parameters Extraction of Flexible Amorphous Silicon Solar Cell a-Si: H. Appl. Solar Energy 56, 1–12 (2020).

    Article  Google Scholar 

  211. D. Kim, J. Kim, H. Kang, J.W. Shim, and J.W. Lee, Influence of Flexible Substrate in Low Temperature Polycrystalline Silicon Thin-Film Transistors: Temperature Dependent Characteristics and Low Frequency Noise Analysis. Nanotechnology 31, 435201 (2020).

    Article  CAS  Google Scholar 

  212. Y.-Z. Zheng, P.-H. Chen, T.-C. Chang, T.-M. Tsai, K.-J. Zhou, Y.-F. Tu et al., Enhancing Reliability and 2 mm-Axial Mechanical Bending Endurance by Gate Insulator Improvements in Flexible Polycrystalline Silicon TFTs. IEEE Trans. Electron Devices 69, 2423–2429 (2022).

    Article  CAS  Google Scholar 

  213. W. Cheng, L. Yu, D. Kong, Z. Yu, H. Wang, Z. Ma et al., Fast-Response and Low-Hysteresis Flexible Pressure Sensor Based on Silicon Nanowires. IEEE Electron Device Lett. 39, 1069–1072 (2018).

    Article  CAS  Google Scholar 

  214. M. Cho, J. Yun, D. Kwon, K. Kim, and I. Park, High-Sensitivity and Low-Power Flexible Schottky Hydrogen Sensor Based on Silicon Nanomembrane. ACS Appl. Mater. Interf. 10, 12870–12877 (2018).

    Article  CAS  Google Scholar 

  215. E. Song, Q. Guo, G. Huang, B. Jia, and Y. Mei, Bendable Photodetector on Fibers Wrapped with Flexible Ultrathin Single Crystalline Silicon Nanomembranes. ACS Appl. Mater. Interf. 9, 12171–12175 (2017).

    Article  CAS  Google Scholar 

  216. H.C. Lim, B. Schulkin, M. Pulickal, S. Liu, R. Petrova, G. Thomas et al., Flexible Membrane Pressure Sensor. Sens. Actuat., A 119, 332–335 (2005).

    Article  CAS  Google Scholar 

  217. T. Moy, L. Huang, W. Rieutort-Louis, C. Wu, P. Cuff, S. Wagner et al., An EEG Acquisition and Biomarker-Extraction System Using Low-Noise-Amplifier and Compressive-Sensing Circuits Based on Flexible, Thin-Film Electronics. IEEE J. Solid-State Circuits 52, 309–321 (2016).

    Article  Google Scholar 

  218. M.A. Marrs and G.B. Raupp, Substrate and Passivation Techniques For Flexible Amorphous Silicon-Based X-Ray Detectors. Sensors. 16, 1162 (2016).

    Article  Google Scholar 

  219. Y. Zhao, J.-G. Song, G.H. Ryu, K.Y. Ko, W.J. Woo, Y. Kim et al., Low-Temperature Synthesis of 2D MoS 2 on a Plastic Substrate for a Flexible Gas Sensor. Nanoscale 10, 9338–9345 (2018).

    Article  CAS  Google Scholar 

  220. Y. Vasseghian, V.D. Doan, T.T.T. Nguyen, T.-T.T. Vo, H.H. Do, K.B. Vu et al., Flexible and High-Sensitivity Sensor Based on Ti3C2–MoS2 MXene Composite for the Detection of Toxic Gases. Chemosphere. 291, 133025 (2022).

    Article  Google Scholar 

  221. L. Hao, H. Liu, H. Xu, S. Dong, Y. Du, Y. Wu et al., Flexible Pd-WS2/Si Heterojunction Sensors for Highly Sensitive Detection of Hydrogen at Room Temperature. Sens. Actuat., B Chem. 283, 740–748 (2019).

    Article  CAS  Google Scholar 

  222. J.-H. Kim, A. Mirzaei, H.W. Kim, and S.S. Kim, Flexible and Low Power CO Gas Sensor with Au-Functionalized 2D WS2 Nanoflakes. Sens. Actuat., B Chem. 313, 128040 (2020).

    Article  CAS  Google Scholar 

  223. P. Lin, L. Zhu, D. Li, L. Xu, and Z.L. Wang, Tunable WSe 2–CdS Mixed-Dimensional Van Der Waals Heterojunction with a Piezo-Phototronic Effect for an Enhanced Flexible Photodetector. Nanoscale 10, 14472–14479 (2018).

    Article  CAS  Google Scholar 

  224. C. Xie and F. Yan, Flexible Photodetectors Based on Novel Functional Materials. Small 13, 1701822 (2017).

    Article  Google Scholar 

  225. I. Suárez, E. Hassanabadi, A. Maulu, N. Carlino, C.A. Maestri, M. Latifi et al., Integrated Optical Amplifier-Photodetector on a Wearable Nanocellulose Substrate. Advanced Optical Materials. 6, 1800201 (2018).

    Article  Google Scholar 

  226. C. Xie, P. You, Z. Liu, L. Li, and F. Yan, Ultrasensitive Broadband Phototransistors Based on Perovskite/Organic-Semiconductor Vertical Heterojunctions. Light: Sci. Appl. 6, e17023 (2017).

    Article  Google Scholar 

  227. Y. Shen, D. Yu, X. Wang, C. Huo, Y. Wu, Z. Zhu et al., Two-Dimensional CsPbBr 3/PCBM Heterojunctions for Sensitive, Fast and Flexible Photodetectors Boosted by Charge Transfer. Nanotechnology 29, 085201 (2018).

    Article  Google Scholar 

  228. H. Hu, X. Zhu, C. Wang, L. Zhang, X. Li, S. Lee et al., Stretchable Ultrasonic Transducer Arrays for Three-Dimensional Imaging on Complex Surfaces. Science Adv. 4, eaar3979 (2018).

    Article  Google Scholar 

  229. X. Hu, X.-X. Xia, S.-C. Huang, and Z.-G. Qian, Development of Adhesive and Conductive Resilin-Based Hydrogels for Wearable Sensors. Biomacromol 20, 3283–3293 (2019).

    Article  CAS  Google Scholar 

  230. J. Chen, Q. Peng, T. Thundat, and H. Zeng, Stretchable, Injectable and Self-Healing Conductive Hydrogel Enabled by Multiple Hydrogen Bonding Toward Wearable Electronics. Chem. Mater. 31, 4553–4563 (2019).

    Article  CAS  Google Scholar 

  231. P. Wei, T. Chen, G. Chen, H. Liu, I.T. Mugaanire, K. Hou et al., Conductive Self-Healing Nanocomposite Hydrogel Skin Sensors with Antifreezing and Thermoresponsive Properties. ACS Appl. Mater. Interf. 12, 3068–3079 (2019).

    Article  Google Scholar 

  232. Q. Wang, X. Pan, C. Lin, D. Lin, Y. Ni, L. Chen et al., Biocompatible, Self-wrinkled, Antifreezing and Stretchable Hydrogel-Based Wearable Sensor with PEDOT: Sulfonated Lignin as Conductive Materials. Chem. Eng. J. 370, 1039–1047 (2019).

    Article  CAS  Google Scholar 

  233. Y. Peng, M. Pi, X. Zhang, B. Yan, Y. Li, L. Shi et al., High Strength, Antifreeze and Moisturizing Conductive Hydrogel for Human-Motion Detection. Polymer 196, 122469 (2020).

    Article  CAS  Google Scholar 

  234. H. Wang, H. Wang, Y. Wang, X. Su, C. Wang, M. Zhang et al., Laser Writing of Janus Graphene/kevlar Textile for Intelligent Protective Clothing. ACS Nano 14, 3219–3226 (2020).

    Article  CAS  Google Scholar 

  235. T. Wang, Y. Zhang, Q. Liu, W. Cheng, X. Wang, L. Pan et al., A Self-Healable, Highly Stretchable, and Solution Processable Conductive Polymer Composite for Ultrasensitive Strain and Pressure Sensing. Adv. Func. Mater. 28, 1705551 (2018).

    Article  Google Scholar 

  236. S. Li, Y. Zhang, Y. Wang, K. Xia, Z. Yin, H. Wang et al., Physical Sensors for Skin-Inspired Electronics. InfoMat. 2, 184–211 (2020).

    Article  CAS  Google Scholar 

  237. Z. Liu, Y. Ma, H. Ouyang, B. Shi, N. Li, D. Jiang et al., Transcatheter Self-Powered Ultrasensitive Endocardial Pressure Sensor. Adv. Func. Mater. 29, 1807560 (2019).

    Article  Google Scholar 

  238. Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh, D. Son et al., A Bioinspired Flexible Organic Artificial Afferent Nerve. Science 360, 998–1003 (2018).

    Article  CAS  Google Scholar 

  239. P. Wu, A. Xiao, Y. Zhao, F. Chen, M. Ke, Q. Zhang et al., An Implantable and Versatile Piezoresistive Sensor for the Monitoring of Human–Machine Interface Interactions and the Dynamical Process of Nerve Repair. Nanoscale 11, 21103–21118 (2019).

    Article  CAS  Google Scholar 

  240. G. Shen, C. Zhang, T. Liang, Y. Xin, J. Liang, Y. Zhong et al., Microstructure Engineering of Stretchable Resistive Strain Sensors with Discrimination Capabilities in Transverse and Longitudinal Directions. Macromol. Mater. Eng. 306, 2100283 (2021).

    Article  CAS  Google Scholar 

  241. P. Xia, P. Liu, S. Wu, Q. Zhang, P. Wang, R. Hu et al., Highly Stretchable and Sensitive Flexible Resistive Strain Sensor Based on Waterborne Polyurethane Polymer for Wearable Electronics. Compos. Sci. Technol. 221, 109355 (2022).

    Article  CAS  Google Scholar 

  242. B. Nie, R. Huang, T. Yao, Y. Zhang, Y. Miao, C. Liu et al., Textile-Based Wireless Pressure Sensor Array for Human-Interactive Sensing. Adv. Func. Mater. 29, 1808786 (2019).

    Article  Google Scholar 

  243. J. Yang, S. Luo, X. Zhou, J. Li, J. Fu, W. Yang et al., Flexible, Tunable and Ultrasensitive Capacitive Pressure Sensor with Microconformal Graphene Electrodes. ACS Appl. Mater. Interf. 11, 14997–15006 (2019).

    Article  CAS  Google Scholar 

  244. K.T. Fujimoto, J.K. Watkins, T. Phero, D. Litteken, K. Tsai, T. Bingham et al., Aerosol Jet Printed Capacitive Strain Gauge for Soft Structural Materials. NPJ Flexib. Electr. 4, 1–9 (2020).

    Google Scholar 

  245. V.K. Rao, N. Shauloff, X. Sui, H.D. Wagner, and R. Jelinek, Polydiacetylene Hydrogel Self-Healing Capacitive Strain Sensor. J. Mater. Chem. C. 8, 6034–6041 (2020).

    Article  CAS  Google Scholar 

  246. J. Nie, L. Zhu, W. Zhai, A. Berbille, L. Li, and Z.L. Wang, Flexible Piezoelectric Nanogenerators Based on P (VDF-TrFE)/CsPbBr 3 Quantum Dot Composite Films. ACS Appl. Electron. Mater. 3, 2136–2144 (2021).

    Article  CAS  Google Scholar 

  247. X. Hu, X. Yan, L. Gong, F. Wang, Y. Xu, L. Feng et al., Improved Piezoelectric Sensing Performance of P (VDF–TrFE) Nanofibers by Utilizing BTO Nanoparticles and Penetrated Electrodes. ACS Appl. Mater. Interf. 11, 7379–7386 (2019).

    Article  CAS  Google Scholar 

  248. Z. Zhang, L. Chen, X. Yang, T. Li, X. Chen, X. Li et al., Enhanced Flexible Piezoelectric Sensor by the Integration of P (VDF-TrFE)/AgNWs Film with a-IGZO TFT. IEEE Electron Device Lett. 40, 111–114 (2018).

    Google Scholar 

  249. S. Khan, W. Dang, L. Lorenzelli, and R. Dahiya, Flexible Pressure Sensors Based on Screen-Printed P (VDF-TrFE) and P (VDF-TrFE)/MWCNTs. IEEE Trans. Semicond. Manuf. 28, 486–493 (2015).

    Article  Google Scholar 

  250. S.-H. Shin, D.H. Park, J.-Y. Jung, M.H. Lee, and J. Nah, Ferroelectric Zinc Oxide Nanowire Embedded Flexible Sensor for Motion and Temperature Sensing. ACS Appl. Mater. Interf. 9, 9233–9238 (2017).

    Article  CAS  Google Scholar 

  251. W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu et al., Cowpea-Structured PVDF/ZnO Nanofibers Based Flexible Self-Powered Piezoelectric Bending Motion Sensor Towards Remote Control of Gestures. Nano Energy 55, 516–525 (2019).

    Article  CAS  Google Scholar 

  252. S. Chen, J. Luo, X. Wang, Q. Li, L. Zhou, C. Liu et al., Fabrication and Piezoresistive/Piezoelectric Sensing Characteristics of Carbon Nanotube/pva/nano-zno Flexible Composite. Sci. Rep. 10, 1–12 (2020).

    Google Scholar 

  253. Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long et al., Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS Nano 11, 4507–4513 (2017).

    Article  CAS  Google Scholar 

  254. T.A. Ali, J. Groten, J. Clade, D. Collin, P. Schaffner, M. Zirkl et al., Screen-Printed Ferroelectric P (VDF-TrFE)-co-PbTiO3 and P (VDF-TrFE)-co-NaBiTi2O6 Nanocomposites for Selective Temperature and Pressure Sensing. ACS Appl. Mater. Interfaces. 12, 38614–38625 (2020).

    Article  CAS  Google Scholar 

  255. S. Cheng, S. Han, Z. Cao, C. Xu, X. Fang, and X. Wang, Wearable and Ultrasensitive Strain Sensor Based on High-Quality GaN pn Junction Microwire Arrays. Small 16, 1907461 (2020).

    Article  CAS  Google Scholar 

  256. L.C. Clark Jr. and C. Lyons, Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 102, 29–45 (1962).

    Article  CAS  Google Scholar 

  257. J. Zhang, J. Ma, S. Zhang, W. Wang, and Z. Chen, A Highly Sensitive Nonenzymatic Glucose Sensor Based on CuO Nanoparticles Decorated Carbon Spheres. Sens. Actuators, B Chem. 211, 385–391 (2015).

    Article  CAS  Google Scholar 

  258. W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck et al., Fully Integrated Wearable Sensor Arrays for Multiplexed in situ Perspiration Analysis. Nature 529, 509–514 (2016).

    Article  CAS  Google Scholar 

  259. Y. Huang, J. Tan, L. Cui, Z. Zhou, S. Zhou, Z. Zhang et al., Graphene and Au NPs co-Mediated Enzymatic Silver Deposition for the Ultrasensitive Electrochemical Detection of Cholesterol. Biosens. Bioelectron. 102, 560–567 (2018).

    Article  CAS  Google Scholar 

  260. M. Xu and V.K. Yadavalli, Flexible Biosensors for the Impedimetric Detection of Protein Targets Using silk-Conductive Polymer Biocomposites. ACS Sensors 4, 1040–1047 (2019).

    Article  CAS  Google Scholar 

  261. M.A. Zahed, S.C. Barman, M. Sharifuzzaman, S. Zhang, H. Yoon, C. Park et al., Polyaziridine-Encapsulated Phosphorene-Incorporated Flexible 3D Porous Graphene for Multimodal Sensing and Energy Storage Applications. Adv. Func. Mater. 31, 2009018 (2021).

    Article  CAS  Google Scholar 

  262. Z. Sun, H. Jin, Y. Sun, X. Jiang, and R. Gui, Mn-Doping-Induced Hierarchical Petal Growth of a Flower-like 3D MOF Assembled with Black Phosphorous Nanosheets as an Electrochemical Aptasensor of Human Stress-Induced Phosphoprotein 1. Nanoscale 12, 14538–14548 (2020).

    Article  CAS  Google Scholar 

  263. Q. Lu, T. Su, Z. Shang, D. Jin, Y. Shu, Q. Xu et al., Flexible Paper-Based Ni-MOF Composite/AuNPs/CNTs Film Electrode for HIV DNA Detection. Biosens. Bioelectron. 184, 113229 (2021).

    Article  CAS  Google Scholar 

  264. Z. Zhu, C. Liu, F. Jiang, J. Liu, G. Liu, X. Ma et al., Flexible Fiber-Shaped Hydrogen Gas Sensor via Coupling Palladium with Conductive Polymer Gel Fiber. J. Hazard. Mater. 411, 125008 (2021).

    Article  CAS  Google Scholar 

  265. K.G. Nair, R. Vishnuraj, and B. Pullithadathil, Highly Sensitive, Flexible H2 Gas Sensors Based on Less Platinum Bimetallic Ni–Pt Nanocatalyst-Functionalized Carbon Nanofibers. ACS Appl. Electron. Mater. 3, 1621–1633 (2021).

    Article  CAS  Google Scholar 

  266. C. Yang, J. Xie, C. Lou, W. Zheng, X. Liu, and J. Zhang, Flexible NO2 Sensors Based on WSe2 Nanosheets with Bifunctional Selectivity and Superior Sensitivity Under UV Activation. Sens. Actuators, B Chem. 333, 129571 (2021).

    Article  CAS  Google Scholar 

  267. X. Zhang, Z. Zhai, J. Wang, X. Hao, Y. Sun, S. Yu et al., Zr-MOF Combined with Nanofibers as an Efficient and Flexible Capacitive Sensor for Detecting SO2. ChemNanoMat. 7, 1117–1124 (2021).

    Article  CAS  Google Scholar 

  268. J.-Y. Kang, W.-T. Koo, J.-S. Jang, D.-H. Kim, Y.J. Jeong, R. Kim et al., 2D Layer Assembly of Pt-ZnO Nanoparticles on Reduced Graphene Oxide for Flexible NO2 Sensors. Sens. Actuators, B Chem. 331, 129371 (2021).

    Article  CAS  Google Scholar 

  269. F.A. Nugroho, I. Darmadi, L. Cusinato, A. Susarrey-Arce, H. Schreuders, L.J. Bannenberg et al., Metal–Polymer Hybrid Nanomaterials for Plasmonic Ultrafast Hydrogen Detection. Nat. Mater. 18, 489–495 (2019).

    Article  CAS  Google Scholar 

  270. Y. Li, J. Ma, T.D. Waite, M.R. Hoffmann, and Z. Wang, Development of a Mechanically Flexible 2D-MXene Membrane Cathode for Selective Electrochemical Reduction of Nitrate to N2: Mechanisms and Implications. Environ. Sci. Technol. 55, 10695–10703 (2021).

    Article  CAS  Google Scholar 

  271. H.-R. Lim, Y. Lee, K.A. Jones, Y.-T. Kwon, S. Kwon, M. Mahmood et al., All-in-one, Wireless, Fully Flexible Sodium Sensor System with Integrated Au/CNT/Au Nanocomposites. Sens. Actuat., B Chem. 331, 129416 (2021).

    Article  CAS  Google Scholar 

  272. L. Shao, X. Zhao, S. Gu, Y. Ma, Y. Liu, X. Deng et al., Pt Thin-Film Resistance Temperature Detector on Flexible Hastelloy Tapes. Vacuum 184, 109966 (2021).

    Article  CAS  Google Scholar 

  273. R. Yin, S. Yang, Q. Li, S. Zhang, H. Liu, J. Han et al., Flexible Conductive Ag Nanowire/Cellulose Nanofibril Hybrid Nanopaper for Strain and Temperature Sensing Applications. Science Bulletin. 65, 899–908 (2020).

    Article  CAS  Google Scholar 

  274. B.A. Kuzubasoglu, E. Sayar, C. Cochrane, V. Koncar, and S.K. Bahadir, Wearable Temperature Sensor for Human Body Temperature Detection. J. Mater. Sci.: Mater. Electron. 32, 4784–4797 (2021).

    CAS  Google Scholar 

  275. F. Wang, J. Jiang, F. Sun, L. Sun, T. Wang, Y. Liu et al., Flexible Wearable Graphene/Alginate Composite Non-Woven Fabric Temperature Sensor with High Sensitivity and Anti-Interference. Cellulose 27, 2369–2380 (2020).

    Article  CAS  Google Scholar 

  276. V.S. Turkani, B.B. Narakathu, D. Maddipatla, B.N. Altay, P.D. Fleming, B.J. Bazuin, et al., editors. Nickel Based Printed Resistance Temperature Detector on Flexible Polyimide Substrate. IEEE Sensors (2018)

  277. C. Zhu, D. Guo, D. Ye, S. Jiang, and Y. Huang, Flexible PZT-Integrated, Bilateral Sensors via Transfer-Free Laser Lift-off for Multimodal Measurements. ACS Appl. Mater. Interfaces. 12, 37354–37362 (2020).

    Article  CAS  Google Scholar 

  278. Y. Zhang, Q. Tan, L. Zhang, W. Zhang, and J. Xiong, A Novel SAW Temperature-Humidity-Pressure (THP) Sensor Based on LiNbO3 for Environment Monitoring. J. Phys. D Appl. Phys. 53, 375401 (2020).

    Article  CAS  Google Scholar 

  279. C. Zhao, W. Geng, X. Qiao, F. Xue, J. He, G. Xue et al., Anti-Irradiation SAW Temperature Sensor Based on 128° YX LiNbO3 Single Crystal. Sens. Actuators, A 333, 113230 (2022).

    Article  CAS  Google Scholar 

  280. X. Li, Q. Tan, L. Qin, X. Yan, and X. Liang, Novel Surface Acoustic Wave Temperature-Strain Sensor Based on LiNbO3 for Structural Health Monitoring. Micromachines 13, 912 (2022).

    Article  Google Scholar 

  281. J. He, S. Li, X. Hou, Y. Zhou, H. Li, M. Cui et al., A Non-Contact Flexible Pyroelectric Sensor for Wireless Physiological Monitoring System. Science CHINA Inf. Sci. 65, 1–11 (2022).

    Article  Google Scholar 

  282. S. Veeralingam and S. Badhulika, Bi2S3/PVDF/Ppy-Based Freestanding, Wearable, Transient Nanomembrane for Ultrasensitive Pressure, Strain and Temperature Sensing. ACS Appl. Bio Mater. 4, 14–23 (2020).

    Article  Google Scholar 

  283. W.E. Mahmoud and S.A. Al-Bluwi, Development of Highly Sensitive Temperature Sensor Made of Graphene Monolayers Doped P (VDF-TrFE) Nanocomposites. Sens. Actuat., A 312, 112101 (2020).

    Article  CAS  Google Scholar 

  284. G. Li, D. Xie, Z. Zhang, Q. Zhou, H. Zhong, H. Ni et al., Flexible VO2 Films for In-Sensor Computing with Ultraviolet Light. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202203074.

    Article  Google Scholar 

  285. H. Matsukiyo, E. Sato, Y. Oda, S. Yamaguchi, Y. Sato, O. Hagiwara et al., Investigation of Quad-Energy High-Rate Photon Counting for X-ray Computed Tomography Using a Cadmium Telluride Detector. Appl. Radiat. Isot. 130, 54–59 (2017).

    Article  CAS  Google Scholar 

  286. L. Zhang, J. He, Y. Liao, X. Zeng, N. Qiu, Y. Liang et al., A Self-Protective, Reproducible Textile Sensor With High Performance Towards Human–Machine Interactions. J Mater Chem A. 7, 26631–26640 (2019).

    Article  CAS  Google Scholar 

  287. A. García Patiño, M. Khoshnam, and C. Menon, Wearable Device to Monitor Back Movements Using an Inductive Textile Sensor. Sensors. 20, 905 (2020).

    Article  Google Scholar 

  288. W. Lu, P. Yu, M. Jian, H. Wang, H. Wang, X. Liang et al., Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric As Smart Textile for Wearable Pressure-Sensing and Energy Devices. ACS Appl. Mater. Interf. 12, 11825–11832 (2020).

    Article  CAS  Google Scholar 

  289. H. Zhang, W. Niu, and S. Zhang, Extremely Stretchable and Self-Healable Electrical Skin with Mechanical Adaptability, an Ultrawide Linear Response Range, and Excellent Temperature Tolerance. ACS Appl. Mater. Interfaces. 11, 24639–24647 (2019).

    Article  CAS  Google Scholar 

  290. L. Atallah, C. Ciuhu, C. Wang, E. Bongers, T. Blom, I. Paulussen, et al., editors. An Ergonomic Wearable Core Body Temperature Sensor. 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN); (2018): IEEE.

  291. H.Chen, S. Bao, J. Ma, P. Wang, H. Lu, S.B. Oetomo, et al., editors. A wearable daily respiration monitoring system using pdms-graphene compound tensile sensor for adult. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); (2019) IEEE.

  292. Choi M, Kim SW, editors. Driver's movement monitoring system using capacitive ECG sensors. 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE); 2017: IEEE.

  293. Y. Nagasato, S. Izumi, H. Kawaguchi, M. Yoshimoto, editors. Capacitively coupled ECG sensor system with digitally assisted noise cancellation for wearable application. 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS); (2017): IEEE.

  294. C. Steinberg, F. Philippon, M. Sanchez, P. Fortier-Poisson, G. O’Hara, F. Molin et al., A Novel Wearable Device for Continuous Ambulatory ECG Recording: Proof of Concept and Assessment of Signal Quality. Biosensors 9, 17 (2019).

    Article  Google Scholar 

  295. A.K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, Filterbank-Based Fingerprint Matching. IEEE Trans. Image Process. 9, 846–859 (2000).

    Article  CAS  Google Scholar 

  296. L. Hong, Y. Wan, and A. Jain, Fingerprint Image Enhancement: Algorithm and Performance Evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20, 777–789 (1998).

    Article  Google Scholar 

  297. P.E. Malinowski, T.-H. Ke, H. Akkerman, A. Nakamura, S. Shanmugam, A. van Breemen et al., editors. 71‐3 Organic photolithography for displays with integrated fingerprint scanner. SID Symposium Digest of Technical Papers; (2019): Wiley Online Library.

  298. H. Akkerman, B. Peeters, A. Van Breemen,S. Shanmugam, D. Tordera, J.-L. van der Steen, et al., editors. 39‐3: printed organic photodetector arrays and their use in palmprint scanners. SID Symposium Digest of Technical Papers; (2018): Wiley Online Library.

  299. N. Miura, A. Nagasaka, and T. Miyatake, Feature Extraction of Finger-vein Patterns Based on Repeated Line tracking and its Application to Personal Identification. Mach. Vis. Appl. 15, 194–203 (2004).

    Article  Google Scholar 

  300. D. Tordera, B. Peeters, E. Delvitto, S. Shanmugam, J. Maas, J. de Riet et al., Vein Detection With Near-Infrared Organic Photodetectors for Biometric Authentication. J. Soc. Inform. Display 28, 381–391 (2020).

    Article  CAS  Google Scholar 

  301. R. Arzbaecher, D.R. Hampton, M.C. Burke, and M.C. Garrett, Subcutaneous Electrocardiogram Monitors and their Field of View. J. Electrocardiol. 43, 601–605 (2010).

    Article  Google Scholar 

  302. J. Shin, Z. Liu, W. Bai, Y. Liu, Y. Yan, Y. Xue et al., Bioresorbable Optical Sensor Systems for Monitoring of Intracranial Pressure and Temperature. Sci. Adv. 5, eaaw1899 (2019).

    Article  CAS  Google Scholar 

  303. L. Li, H. Xiang, Y. Xiong, H. Zhao, Y. Bai, S. Wang et al., Ultrastretchable Fiber Sensor with High Sensitivity in Whole Workable Range for Wearable Electronics and Implantable Medicine. Adv. Sci. 5, 1800558 (2018).

    Article  Google Scholar 

  304. S.M. Lee, H.J. Byeon, B.H. Kim, J. Lee, J.Y. Jeong, J.H. Lee et al., Flexible and Implantable Capacitive Microelectrode for Bio-Potential Acquisition. BioChip J. 11, 153–163 (2017).

    Article  CAS  Google Scholar 

  305. T.T. Tomson and R. Passman, Current and Emerging Uses of Insertable Cardiac Monitors. Cardiol. Rev. 25, 22–29 (2017).

    Article  Google Scholar 

  306. J. Park, S. Choi, A.H. Janardhan, S.-Y. Lee, S. Raut, J. Soares et al., Electromechanical Cardioplasty Using a Wrapped Elasto-Conductive Epicardial Mesh. Science Transl. Med. 8, 344ra86-ra86 (2016).

    Article  Google Scholar 

  307. L. Ren, K. Yu, and Y. Tan, Wireless and Passive Magnetoelastic-Based Sensor for Force Monitoring of Artificial Bone. IEEE Sens. J. 19, 2096–2104 (2018).

    Article  Google Scholar 

  308. Z.L. Wang and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 312, 242–246 (2006).

    Article  CAS  Google Scholar 

  309. C. Gao, H. Yu, Y. Wang, D. Liu, T. Wen, L. Zhang et al., Based Constant Potential Electrochemiluminescence Sensing Platform with Black Phosphorus as a Luminophore Enabled by a Perovskite Solar Cell. Anal. Chem. 92, 6822–6826 (2020).

    Article  CAS  Google Scholar 

  310. C. Li, S. Cong, Z. Tian, Y. Song, L. Yu, C. Lu et al., Flexible Perovskite Solar Cell-Driven Photo-Rechargeable Lithium-ion Capacitor for Self-Powered Wearable Strain Sensors. Nano Energy 60, 247–256 (2019).

    Article  CAS  Google Scholar 

  311. S. Wang, G. Xie, H. Tai, Y. Su, B. Yang, Q. Zhang et al., Ultrasensitive Flexible Self-Powered Ammonia Sensor Based on Triboelectric Nanogenerator at Room Temperature. Nano Energy 51, 231–240 (2018).

    Article  CAS  Google Scholar 

  312. J. Chang, H. Meng, C. Li, J. Gao, S. Chen, Q. Hu et al., A Wearable Toxic Gas-Monitoring Device Based on Triboelectric Nanogenerator For Self-Powered Aniline Early Warning. Adv. Mater. Techn. 5, 1901087 (2020).

    Article  CAS  Google Scholar 

  313. D. Zhang, Z. Yang, P. Li, M. Pang, and Q. Xue, Flexible Self-Powered High-Performance Ammonia Sensor Based on Au-Decorated MoSe2 Nanoflowers Driven by Single Layer MoS2-Flake Piezoelectric Nanogenerator. Nano Energy 65, 103974 (2019).

    Article  CAS  Google Scholar 

  314. Y. Zhao, X. Lai, P. Deng, Y. Nie, Y. Zhang, L. Xing et al., Pt/ZnO Nanoarray Nanogenerator as Self-Powered Active Gas Sensor with Linear Ethanol Sensing at Room Temperature. Nanotechnology 25, 115502 (2014).

    Article  Google Scholar 

  315. Y. Fu, Y. Nie, Y. Zhao, P. Wang, L. Xing, Y. Zhang et al., Detecting Liquefied Petroleum gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor. ACS Appl. Mater. Interf. 7, 10482–10490 (2015).

    Article  CAS  Google Scholar 

  316. Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang et al., Room-Temperature Self-Powered Ethanol Sensing of a Pd/ZnO Nanoarray Nanogenerator Driven by Human Finger Movement. Nanoscale 6, 4604–4610 (2014).

    Article  CAS  Google Scholar 

  317. S. Cui, Y. Zheng, T. Zhang, D. Wang, F. Zhou, and W. Liu, Self-Powered Ammonia Nanosensor Based on the Integration of the Gas Sensor and Triboelectric Nanogenerator. Nano Energy 49, 31–39 (2018).

    Article  CAS  Google Scholar 

  318. Y. Tian, P. He, B. Yang, Z. Yi, L. Lu, and J. Liu, A Flexible Piezoelectric Strain Sensor Array with Laser-Patterned Serpentine Interconnects. IEEE Sens. J. 20, 8463–8468 (2020).

    Article  CAS  Google Scholar 

  319. S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem, Y. Wang et al., Nanomesh Pressure Sensor for Monitoring Finger Manipulation Without Sensory Interference. Science 370, 966–970 (2020).

    Article  CAS  Google Scholar 

  320. H. Chae, H.-J. Kwon, Y.-K. Kim, Y. Won, D. Kim, H.-J. Park et al., Laser-Processed Nature-Inspired Deformable Structures for Breathable and Reusable Electrophysiological Sensors Toward Controllable Home electronic appliances and psychophysiological stress monitoring. ACS Appl. Mater. Interf. 11, 28387–28396 (2019).

    Article  CAS  Google Scholar 

  321. C. Pang, J.H. Koo, A. Nguyen, J.M. Caves, M.G. Kim, A. Chortos et al., Highly Skin-Conformal Microhairy Sensor for Pulse Signal Amplification. Adv. Mater. 27, 634–640 (2015).

    Article  CAS  Google Scholar 

  322. Y. Guo, M. Zhong, Z. Fang, P. Wan, and G. Yu, A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human–Machine Interfacing. Nano Lett. 19, 1143–1150 (2019).

    Article  Google Scholar 

  323. J. Gu, D. Kwon, J. Ahn, and I. Park, Wearable Strain Sensors Using Light Transmittance Change of Carbon Nanotube-Embedded Elastomers with Microcracks. ACS Appl. Mater. Interf. 12, 10908–10917 (2019).

    Article  Google Scholar 

  324. F. Zhang, S. Wu, S. Peng, Z. Sha, and C.H. Wang, Synergism of Binary Carbon Nanofibres and Graphene Nanoplates in Improving Sensitivity and Stability of Stretchable Strain Sensors. Compos. Sci. Technol. 172, 7–16 (2019).

    Article  CAS  Google Scholar 

  325. X. Wang, Y. Zhang, X. Zhang, Z. Huo, X. Li, M. Que et al., A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics. Adv. Mater. 30, 1706738 (2018).

    Article  Google Scholar 

  326. J.S. Kim, S.C. Lee, J. Hwang, E. Lee, K. Cho, S.J. Kim et al., Enhanced Sensitivity of Iontronic Graphene Tactile Sensors Facilitated by Spreading of Ionic Liquid Pinned on Graphene Grid. Adv. Func. Mater. 30, 1908993 (2020).

    Article  CAS  Google Scholar 

  327. J. Shi, L. Wang, Z. Dai, L. Zhao, M. Du, H. Li et al., Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range. Small 14, 1800819 (2018).

    Article  Google Scholar 

  328. J. He, P. Xiao, W. Lu, J. Shi, L. Zhang, Y. Liang et al., A Universal High Accuracy Wearable Pulse Monitoring System via High Sensitivity and Large Linearity Graphene Pressure Sensor. Nano Energy 59, 422–433 (2019).

    Article  CAS  Google Scholar 

  329. V.T. Bui, Q. Zhou, J.N. Kim, J.H. Oh, K.W. Han, H.S. Choi et al., Treefrog Toe Pad-Inspired Micropatterning for High-Power Triboelectric Nanogenerator. Adv. Func. Mater. 29, 1901638 (2019).

    Article  Google Scholar 

  330. X. Shi, H. Wang, X. Xie, Q. Xue, J. Zhang, S. Kang et al., Bioinspired Ultrasensitive and Stretchable MXene-Based Strain Sensor via Nacre-Mimetic Microscale “brick-and-mortar” Architecture. ACS Nano 13, 649–659 (2018).

    Article  Google Scholar 

  331. B. Zhu, S. Gong, F. Lin, Y. Wang, Y. Ling, T. An et al., Patterning Vertically Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors. Adv Electr Mater. 5, 1800509 (2019).

    Article  Google Scholar 

  332. Z. Liu, H. Wang, P. Huang, J. Huang, Y. Zhang, Y. Wang et al., Highly Stable and Stretchable Conductive Films Through Thermal-Radiation-Assisted Metal Encapsulation. Adv. Mater. 31, 1901360 (2019).

    Article  Google Scholar 

  333. H. Riazi, G. Taghizadeh, and M. Soroush, MXene-Based Nanocomposite Sensors. ACS Omega 6, 11103–11112 (2021).

    Article  CAS  Google Scholar 

  334. S. Tortorella, V.V. Buratti, M. Maturi, L. Sambri, M.C. Franchini, and E. Locatelli, Surface-Modified Nanocellulose for Application in Biomedical Engineering and Nanomedicine: A Review. Int. J. Nanomed. 15, 9909 (2020).

    Article  CAS  Google Scholar 

  335. Y. Li, J. Guo, M. Li, Y. Tang, V. Murugadoss, I. Seok et al., Recent Application of Cellulose Gel in Flexible Sensing-a Review. ES Food & Agroforestry. 4, 9–27 (2021).

    Google Scholar 

  336. Y. Lee, J. Park, S. Cho, Y.-E. Shin, H. Lee, J. Kim et al., Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response Over Exceptionally Broad Pressure Range. ACS Nano 12, 4045–4054 (2018).

    Article  CAS  Google Scholar 

  337. F. Sun, M. Tian, X. Sun, T. Xu, X. Liu, S. Zhu et al., Stretchable Conductive Fibers of Ultrahigh Tensile Strain and Stable Conductance Enabled by a Worm-Shaped Graphene Microlayer. Nano Lett. 19, 6592–6599 (2019).

    Article  CAS  Google Scholar 

  338. Y. Peng, A. Ruffino, and E. Charbon, A cryogenic Broadband sub-1-dB NF CMOS Low Noise Amplifier for Quantum Applications. IEEE J. Solid-State Circuits 56, 2040–2053 (2021).

    Article  Google Scholar 

  339. M. Sugiyama, T. Uemura, M. Kondo, M. Akiyama, N. Namba, S. Yoshimoto et al., An Ultraflexible Organic Differential Amplifier for Recording Electrocardiograms. Nat. Electr. 2, 351–360 (2019).

    Article  Google Scholar 

  340. T. Meister, K. Ishida, A. Sou, C. Carta, and F. Ellinger, 4935 MHz GBW and 3343 MHz GBW Amplifiers in Flexible a-IGZO TFT Technology. Electr. Lett. 56, 782–785 (2020).

    Article  CAS  Google Scholar 

  341. M. Dandekar,K. Myny, W. Dehaene, editors. An a-IGZO TFT based Op-Amp with 57 dB DC-Gain, 311 KHz Unity-gain Freq., 75 deg. Phase Margin and 2.43 mW Power on Flexible Substrate. ESSCIRC 2021-IEEE 47th European Solid State Circuits Conference (ESSCIRC); (2021) IEEE.

  342. M. Zulqarnain, S. Stanzione, J.-L.P. Van Der Steen, G.H. Gelinck, K. Myny, S. Abdinia, et al., editors. A 52 µw heart-rate measurement interface fabricated on a flexible foil with a-igzo tfts. ESSCIRC 2018-IEEE 44th European Solid State Circuits Conference (ESSCIRC); (2018): IEEE.

  343. P.G. Bahubalindruni, J. Martins, A. Santa, V. Tavares, R. Martins, E. Fortunato et al., High-Gain Transimpedance Amplifier for Flexible Radiation Dosimetry Using InGaZnO TFTs. IEEE J. Electr. Dev. Soc. 6, 760–765 (2018).

    Article  CAS  Google Scholar 

  344. M. Kondo,T. Uemura,M. Akiyama,N. Namba,M. Sugiyama,Y. Noda, et al., editors. Design of ultraflexible organic differential amplifier circuits for wearable sensor technologies. 2018 IEEE International Conference on Microelectronic Test Structures (ICMTS); (2018) IEEE.

  345. B. Silemek, V. Acikel, C. Oto, A. Alipour, Z.G. Aykut, O. Algin et al., A Temperature Sensor Implant for Active Implantable Medical Devices for in vivo Subacute Heating Tests Under MRI. Magn. Reson. Med. 79, 2824–2832 (2018).

    Article  Google Scholar 

  346. V. Mazzaracchio, L. Fiore, S. Nappi, G. Marrocco, and F. Arduini, Medium-Distance Affordable, Flexible and Wireless Epidermal Sensor for pH Monitoring in Sweat. Talanta 222, 121502 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the funding provided by the National Natural Science Foundation of China (Project No. 62273289), Shandong Province Natural Science Foundation (Project No. ZR2019BF049) and Joint fund of Science & Technology Department of Liaoning Province and State Key Laboratory of Robotics (Project No. 2021-KF-22-03).

Author information

Authors and Affiliations

Authors

Contributions

WY, YQ, and TY proposed the original idea, and planned the configuration; YQ wrote the manuscript; TY, ZW and ZG revised the paper for language and quality. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Wenguang Yang or Zhixing Ge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Qin, Y., Wang, Z. et al. Recent Advances in the Development of Flexible Sensors: Mechanisms, Materials, Performance Optimization, and Applications. J. Electron. Mater. 51, 6735–6769 (2022). https://doi.org/10.1007/s11664-022-09922-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09922-y

Keywords

Navigation