Skip to main content
Log in

Morphological Control and Hydrophilic Properties of TiO2 Nanorod/Nanotube Films by Hydrothermal Method

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanorods/nanotubes grown directly on titanium (Ti) foil were synthesized in different media by the hydrothermal method. In an acid hydrothermal medium, TiO2 nanorod films were easy to obtain. However, the samples tended to form nanotube films in alkaline medium. After ultraviolet (UV) irradiation for 10 min, the contact angle of the TiO2 nanorod film decreased from 8.5° to 2.1°, indicating that the sample possesses excellent superhydrophilic properties. It is worth noting that TiO2 nanotube films exhibited remarkable superhydrophilic properties (contact angle ≤ 1°) even without UV irradiation, which can be attributed to their unique morphology and composition. In addition, Ti foil itself had good flexibility, and the hydrophilic materials prepared with Ti foil as the substrate will show a wider range of applications, such as microfluidic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All data reported in this study are available upon request by contact with the corresponding author.

References

  1. A. Fujishima and K. Honda, Electrochemical Photocatalysis of Water at Semiconductor Electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  2. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Light-Induced Amphiphilic Surfaces. Nature 388, 431 (1997).

    Article  CAS  Google Scholar 

  3. S. Nishimoto and B. Bhushan, Bioinspired Self-Cleaning Surfaces with Superhydrophobicity, Superoleophobicity, and Superhydrophilicity. RSC Adv. 3, 671 (2012).

    Article  Google Scholar 

  4. A. Murakami, T. Arimoto, S. Dai, M. Iwai-Yoshida, F. Otsuka, Y. Shibata, T. Igarashi, R. Kamijo, and T. Miyazaki, Antimicrobial and Osteogenic Properties of a Hydrophilic-Modified Nanoscale Hydroxyapatite Coating on Titanium. Nanomedicine 8, 374 (2012).

    Article  CAS  Google Scholar 

  5. M.M. Momeni and P. Zeinali, Photochemical Deposition of Ag, Cu, Cu@ Ag, and Ag@ Cu on TiO2 Nanotubes and Their Optical Properties and Photoelectrochemical Activity. J. Electron. Mater. 50, 5810 (2021).

    Article  CAS  Google Scholar 

  6. T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, and K. Hashimoto, Photocatalytic Activity and Photoinduced Hydrophilicity of Titanium Dioxide Coated Glass. Thin Solid Films 351, 260 (1999).

    Article  CAS  Google Scholar 

  7. T. Li, B. Guo, C. Wen, and W. Chen, Microstructure, Phase Composition and Hydrophilic Properties of Nano TiO2 Film Prepared by Electron Beam Evaporation. Gongneng Cailiao/J. Funct. Mater. 46, 13035 (2015).

    CAS  Google Scholar 

  8. C.Y. Jimmy, J. Yu, H.Y. Tang, and L. Zhang, Effect of Surface Microstructure on the Photoinduced Hydrophilicity of Porous TiO2 Thin Films. J. Mater. Chem. 12, 81 (2002).

    Article  Google Scholar 

  9. X.-L. Cui, S.-T. Wo, D.-S. Ren, J. Shen, X.-L. Yang, and Z.-J. Zhang, Photo-Induced Hydrophilicity and Cyclic Voltammetric Behavior of TiO2 Thin Film Under Ultraviolet Illumination with Different Wavelengths. Acta Chim. Sin. 61, 1872 (2003).

    CAS  Google Scholar 

  10. Y. Jiang, W.D. Zhang, and S. Gunasekaran, An Amperometric Non-enzymatic Glucose Sensor by Electrodepositing Copper Nanocubes onto Vertically Well-Aligned Multi-walled Carbon Nanotube Arrays. Biosens. Bioelectron. 26, 279 (2010).

    Article  Google Scholar 

  11. L. Yu, Q. Zhi, C. Huang, Y. Zhang, K. Dong, and B. Neppolian, Photocatalytic Properties of TiO2 Porous Network Film. J. Nanosci. Nanotechnol. 15, 6576 (2015).

    Article  CAS  Google Scholar 

  12. S. Dong, H. Wang, L. Gu, X. Zhou, Z. Liu, P. Han, Y. Wang, X. Chen, G. Cui, and L. Chen, Rutile TiO2 Nanorod Arrays Directly Grown on Ti Foil Substrates Towards Lithium-Ion Micro-batteries. Thin Solid Films 519, 5978 (2011).

    Article  CAS  Google Scholar 

  13. S.V. Nair, A. Balakrishnan, K.R.V. Subramanian, A.M. Anu, A.M. Asha, and B. Deepika, Effect of TiO2 Nanotube Length and Lateral Tubular Spacing on Photovoltaic Properties of Back Illuminated Dye Sensitized Solar Cell. Bull. Mater. Sci. 35, 489 (2012).

    Article  CAS  Google Scholar 

  14. B.-X. Lei, Q.-P. Luo, X.-Y. Yu, W.-Q. Wu, C.-Y. Su, and D.-B. Kuang, Hierarchical TiO2 Flowers Built from TiO2 Nanotubes for Efficient Pt-Free Based Flexible Dye-Sensitized Solar Cells. Phys. Chem. Chem. Phys. 14, 13175 (2012).

    Article  CAS  Google Scholar 

  15. T. Liang, H. Li, X. Lai, X. Su, L. Zhang, and X. Zeng, A Facile Approach to UV-Curable Super-Hydrophilic Polyacrylate Coating Film Grafted on Glass Substrate. J. Coat. Technol. Res. 13, 1115 (2016).

    Article  CAS  Google Scholar 

  16. Q. Gao, X.M. Wu, Y.M. Fan, and X.Y. Zhou, Fabrication of Hierarchically Structured Rutile TiO2 Nanorods on Mica Particles and Their Superhydrophilic Coating Without UV Irridiation. Appl. Surf. Sci. 289, 281 (2014).

    Article  CAS  Google Scholar 

  17. Z. Zheng, J.J. Chen, R. Yoshida, X. Gao, K. Tarr, Y.H. Ikuhara, and W.L. Zhou, One-Step Synthesis of TiO2 Nanorod Arrays on Ti Foil for Supercapacitor Application. Nanotechnology 25, 435406 (2014).

    Article  Google Scholar 

  18. J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, C. Shuai, Y. Ma, J. Song, and L. Qi, Self-Cleaning, Broadband and Quasi-Omnidirectional Antireflective Structures Based on Mesocrystalline Rutile TiO2 Nanorod Arrays. Energy Environ. Sci. 5, 7575 (2012).

    Article  CAS  Google Scholar 

  19. L. Yu, Z. Li, Y. Liu, F. Cheng, and S. Sun, Synthesis of Hierarchical TiO2 Flower-Rod and Application in CdSe/CdS Co-Sensitized Solar Cell. J. Power Sources 270, 42 (2014).

    Article  CAS  Google Scholar 

  20. K. Kakiuchi, E. Hosono, H. Imai, T. Kimura, and S. Fujihara, {111}-Faceting of Low-Temperature Processed Rutile TiO2 Rods. J. Cryst. Growth 293, 541 (2006).

    Article  CAS  Google Scholar 

  21. S.-Z. Chen, P.-Y. Zhang, W.-P. Zhu, L. Chen, and S.-M. Xu, Deactivation of TiO2 Photocatalytic Films Loaded on Aluminium: XPS and AFM Analyses. Appl. Surf. Sci. 252, 7532 (2006).

    Article  CAS  Google Scholar 

  22. E. Hernández-Rodríguez, A. Márquez-Herrera, E. Zaleta-Alejandre, M. Meléndez-Lira, W. De La Cruz, and M. Zapata-Torres, Effect of Electrode Type in the Resistive Switching Behaviour of TiO2 Thin Films. J. Phys. D 46, 045103 (2012).

    Article  Google Scholar 

  23. D. Chu, A. Younis, and S. Li, Direct Growth of TiO2 Nanotubes on Transparent Substrates and Their Resistive Switching Characteristics. J. Phys. D 45, 355306 (2012).

    Article  Google Scholar 

  24. Y.-C. Chang, J.-C. Lin, and S.-H. Wu, One-Step Growth of Na2Ti3O7 Nanorods for Enhanced Photocatalytic Activities and Recyclability. J. Alloys Compd. 749, 955 (2018).

    Article  CAS  Google Scholar 

  25. J. Zhang, Y. Song, F. Lu, W. Fei, Y. Mengqiong, L. Genxiang, X. Qian, W. Xiang, and L. Can, Photocatalytic Degradation of Rhodamine B on Anatase, Rutile, and Brookite TiO2. Chin. J. Catal. 32, 983 (2011).

    Article  CAS  Google Scholar 

  26. Y. Luo, D. Kong, J. Luo, S. Chen, D. Zhang, K. Qiu, X. Qi, H. Zhang, C.M. Li, and T. Yu, Hierarchical TiO2 Nanobelts@ MnO2 Ultrathin Nanoflakes Core-Shell Array Electrode Materials for Supercapacitors. Rsc Adv. 3, 14413 (2013).

    Article  CAS  Google Scholar 

  27. A.I. Rafieh, P. Ekanayake, H. Nakajima, A.H. Mahadi, M. Abu, M.F. Don, and C.M. Lim, Enhanced N719 Dye Adsorption onto Ca and La Doped Mesoporous TiO2 Anodes for Dye-Sensitized Solar Cells. J. Electron. Mater. 50, 5788 (2021).

    Article  CAS  Google Scholar 

  28. Y.K. Mishra and R. Adelung, ZnO Tetrapod Materials for Functional Applications. Mater. Today 21, 631 (2018).

    Article  CAS  Google Scholar 

  29. P.W. Voorhees, The Theory of Ostwald Ripening. J. Stat. Phys. 38, 231 (1985).

    Article  Google Scholar 

  30. G. Liu, J. Ye, Z. Hou, S. Chen, L. Hu, X. Pan, and S. Dai, Influence of Crack-Defect on Perovskite Solar Cells Performance. Chem. J. Chin. Univ. 39, 545 (2018).

    CAS  Google Scholar 

  31. T. Zubkov, D. Stahl, T.L. Thompson, D. Panayotov, O. Diwald, and J.T. Yates, Ultraviolet Light-Induced Hydrophilicity Effect on TiO2 (110) (1x1). Dominant Role of the Photooxidation of Adsorbed Hydrocarbons Causing Wetting by Water Droplets. J. Phys. Chem. B 109, 15454 (2005).

    Article  CAS  Google Scholar 

  32. Y. Yang, P. Wang, and Q. Zheng, Preparation and Properties of Polysulfone/TiO2 Composite Ultrafiltration Membranes. J. Polym. Sci. B Polym. Phys. 44, 879 (2006).

    Article  CAS  Google Scholar 

  33. R. Wenzel, N, Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. Res. 28, 988 (1936).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tianjin Natural Science Foundation (18JCYBJC87600).

Author information

Authors and Affiliations

Authors

Contributions

YX, EL, and YC conceived and coordinated the study. YX, EL, DZ, YC, JW, and MZ carried out experimental work and data analysis. All authors discussed the results and commented on the manuscript. YX, EL, and YC wrote the manuscript with the contributions of all co-authors.

Corresponding author

Correspondence to Lei E.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., E, L., Chen, Y. et al. Morphological Control and Hydrophilic Properties of TiO2 Nanorod/Nanotube Films by Hydrothermal Method. J. Electron. Mater. 51, 4565–4579 (2022). https://doi.org/10.1007/s11664-022-09693-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09693-6

Keywords

Navigation