Skip to main content
Log in

A facile approach to UV-curable super-hydrophilic polyacrylate coating film grafted on glass substrate

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The super-hydrophilic polymer coating film can easily be be peeled off from a substrate with the existence of water, which is a fatal drawback in practical applications. Herein, a facile approach is proposed to prepare UV-curable super-hydrophilic polyacrylate coating film that is chemically grafted on the surface of γ-methacryloxypropyltrimethoxysilane-modified glass substrate. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that the polyacrylate coating films were successfully grafted onto the glass substrate and exhibited rough micro-groove structure. The obtained polyacrylate coating film possessed super-hydrophilicity with the water contact angle close to nearly zero as well as good transmittance and antifogging property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Manabe, K, Nishizawa, S, Kyung, KH, Shiratori, S, “Optical Phenomena and Antifrosting Property on Biomimetics Slippery Fluid-Infused Antireflective Films Via Layer-by-Layer Comparison with Superhydrophobic and Antireflective Films.” ACS Appl. Mater. Interfaces, 6 (16) 13985–13993 (2014)

    Article  Google Scholar 

  2. Liu, G, Cai, M, Wang, X, Zhou, F, Liu, W, “Core-Shell-Corona-Structured Polyelectrolyte Brushes-Grafting Magnetic Nanoparticles for Water Harvesting.” ACS Appl. Mater. Interfaces, 6 (14) 11625–11632 (2014)

    Article  Google Scholar 

  3. Huang, JJ, Lee, YT, “Self-Cleaning and Antireflection Properties of Titanium Oxide Film by Liquid Phase Deposition.” Surf. Coat. Technol., 231 (25) 257–260 (2013)

    Article  Google Scholar 

  4. Zhou, G, He, J, Xu, L, “Antifogging Antireflective Coatings on Fresnel Lenses by Integrating Solid and Mesoporous Silica Nanoparticles.” Micropor. Mesopor. Mat., 176 41–47 (2013)

    Article  Google Scholar 

  5. Shankar, R, Ghosh, TK, Spontak, RJ, “Electromechanical Response of Nanostructured Polymer Systems with No Mechanical Pre-Strain.” Macromol. Rapid. Comm., 28 (10) 1142–1147 (2007)

    Article  Google Scholar 

  6. Goel, P, Kumar, S, Sarkar, J, Singh, JP, “Mechanical Strain Induced Tunable Anisotropic Wetting on Buckled PDMS Silvernanorods Arrays.” ACS Appl. Mater. Interfaces, 7 (16) 8419–8426 (2015)

    Article  Google Scholar 

  7. Drelich, J, Chibowski, E, “Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control.” Langmuir, 26 (24) 18621–18623 (2010)

    Article  Google Scholar 

  8. Sobczyk-Guzenda, A, Szymanowski, H, Jakubowski, W, Błasińska, A, Kowalski, J, Gazicki-Lipman, M, “Morphology, Photocleaning and Water Wetting Properties of Cotton Fabrics, Modified with Titanium Dioxide Coatings Synthesized with Plasma Enhanced Chemical Vapor Deposition Technique.” Surf. Coat. Technol., 217 51–57 (2013)

    Article  Google Scholar 

  9. Chen, Y, Zhang, C, Huang, W, Yang, C, Huang, T, Situ, Y, Huang, H, “Synthesis of Porous ZnO/TiO2 Thin Films with Superhydrophilicity and Photocatalytic Activity Via a Template-Free Sol–Gel Method.” Surf. Coat. Technol., 258 531–538 (2014)

    Article  Google Scholar 

  10. Lim, HS, Kwak, D, Lee, DY, Lee, SG, Cho, K, “UV-Driven Reversible Switching of a Roselike Vanadium Oxide Film Between Superhydrophobicity and Superhydrophilicity.” J. Am. Chem. Soc., 129 (14) 4128–4129 (2007)

    Article  Google Scholar 

  11. Wang, R, Hashimoto, K, Fujishima, A, Chikuni, M, Kojima, E, Kitamura, A, Shimohigoshi, M, Watanabe, T, “Light-Induced Amphiphilic Surfaces.” Nature, 388 431–432 (1997)

    Article  Google Scholar 

  12. Fujishima, A, Zhang, X, Tryk, DA, “TiO2 Photocatalysis and Related Surface Phenomena.” Surf. Sci. Rep., 63 (12) 515–582 (2008)

    Article  Google Scholar 

  13. Lai, Y, Tang, Y, Gong, J, Gong, D, Chi, L, Lin, C, Chen, Z, “Transparent Superhydrophobic/Superhydrophilic TiO2-Based Coatings for Self-Cleaning and Anti-fogging.” J. Mater. Chem., 22 7420–7428 (2012)

    Article  Google Scholar 

  14. de Leon, A, Advincula, RC, “Reversible Superhydrophilicity and Superhydrophobicity on a Lotus-Leaf Pattern.” ACS Appl. Mater. Interfaces, 6 (24) 22666–22672 (2014)

    Article  Google Scholar 

  15. Raza, A, Ding, B, Zainab, G, El-Newehy, M, Al-Deyab, SS, Yu, J, “In situ crosslinked Superwetting Nanofibrous Membranes for Ultrafast Oil–Water Separation.” J. Mater. Chem. A, 2 10137–10145 (2014)

    Article  Google Scholar 

  16. Yang, J, Yin, L, Tang, H, Song, H, Gao, X, Liang, K, Li, C, “Polyelectrolyte-Fluorosurfactant Complex-Based Meshes with Superhydrophilicity and Superoleophobicity for Oil/Water Separation.” Chem. Eng. J., 268 245–250 (2015)

    Article  Google Scholar 

  17. Cebeci, FÇ, Wu, Z, Zhai, L, Cohen, RE, Rubner, MF, “Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings.” Langmuir, 22 (6) 2856–2862 (2006)

    Article  Google Scholar 

  18. Kessler, F, Kuhn, S, Radtke, C, Weibel, DE, “Controlling the Surface Wettability of Poly(sulfone) Films by UV-Assisted Treatment: Benefits in Relation to Plasma Treatment.” Polym. Int., 62 (2) 310–318 (2013)

    Article  Google Scholar 

  19. Homayoonfal, M, Akbari, A, Mehrnia, MR, “Preparation of Polysulfone Nanofiltration Membranes by UV-Assisted Grafting Polymerization for Water Softening.” Desalination, 263 (1–3) 217–225 (2010)

    Article  Google Scholar 

  20. Yang, B, Duan, X, Huang, J, “Ultrathin, Biomimetic, Superhydrophilic Layers of Crosslinked Poly(phosphobetaine) on Polyethylene by Photografting.” Langmuir, 31 (3) 1120–1126 (2015)

    Article  Google Scholar 

  21. Abuhabib, AA, Mohammad, AW, Hilal, N, Rahman, RA, Shafie, AH, “Nanofiltration Membrane Modification by UV Grafting for Salt Rejection and Fouling Resistance Improvement for Brackish Water Desalination.” Desalination, 295 16–25 (2012)

    Article  Google Scholar 

  22. Ge, J, Lee, H, He, L, Kim, J, Lu, Z, Kim, H, Goebl, J, Kwon, S, Yin, Y, “Magnetochromatic Microspheres: Rotating Photonic Crystals.” J. Am. Chem. Soc., 131 (43) 15687–15694 (2009)

    Article  Google Scholar 

  23. Wolpers, A, Vana, P, “UV Light as External Switch and Boost of Molar-Mass Control in Iodine-Mediated Polymerization.” Macromolecules, 47 (3) 954–963 (2014)

    Article  Google Scholar 

  24. Guo, W, Ruckenstein, E, “Modified Glass Fiber Membrane and its Application to Membrane Affinity Chromatography.” J. Membr. Sci., 215 (1–2) 141–155 (2003)

    Article  Google Scholar 

  25. Chen, Z, Chen, F, Zeng, F, Li, J, “Preparation and Characterization of the Charged PDMC/Al2O3 Composite Nanofiltration Membrane.” Desalination, 349 106–114 (2014)

    Article  Google Scholar 

  26. Ghicov, A, Schmuki, P, “Self-Ordering Electrochemistry: A Review on Growth and Functionality of TiO2 Nanotubes and Other Self-Aligned MO x Structures.” Chem. Commun., 20 2791–2808 (2009)

    Article  Google Scholar 

  27. Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 (8) 988–994 (1936)

    Article  Google Scholar 

  28. Dong, H, Ye, P, Zhong, M, Pietrasik, J, Drumright, R, Matyjaszewski, K, “Superhydrophilic Surfaces Via Polymer-SiO2 Nanocomposites.” Langmuir, 26 (19) 15567–15573 (2010)

    Article  Google Scholar 

  29. Wu, Z, Lee, D, Rubner, MF, Cohen, RE, “Structural Color in Porous, Superhydrophilic, and Self-Cleaning SiO2/TiO2 Bragg Stacks.” Small, 3 (8) 1445–1451 (2007)

    Article  Google Scholar 

  30. Liu, X, Du, X, He, J, “Hierarchically Structured Porous Films of Silica Hollow Spheres Via Layer-By-Layer Assembly and their Superhydrophilic and Antifogging Properties.” Chemphyschem, 9 (2) 305–309 (2008)

    Article  Google Scholar 

  31. Volpe, CD, Siboni, S, “A ‘Conveyor Belt’ Model for the Dynamic Contact Angle.” Eur. J. Phys., 32 (4) 1019–1032 (2011)

    Article  Google Scholar 

  32. Shimizu, T, Goda, T, Minoura, N, Takai, M, Ishihara, K, “Super-Hydrophilic Silicone Hydrogels with Interpenetrating Poly(2-Methacryloyloxyethyl Phosphorylcholine) Networks.” Biomaterials, 31 (12) 3274–3280 (2010)

    Article  Google Scholar 

  33. Cai, M, Zhang, J, Chen, Y, Cao, J, Leng, M, Hu, S, Luo, X, “Preparation and Characterization of Chitosan Composite Membranes Crosslinked by Carboxyl-Capped Poly(Ethylene Glycol).” Chin. J. Polym. Sci., 32 (2) 236–244 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongqiang Li or Xingrong Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, T., Li, H., Lai, X. et al. A facile approach to UV-curable super-hydrophilic polyacrylate coating film grafted on glass substrate. J Coat Technol Res 13, 1115–1121 (2016). https://doi.org/10.1007/s11998-016-9828-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-016-9828-y

Keywords

Navigation