Skip to main content
Log in

Hydrothermal Synthesis, Characterization, and Electrochemical Properties of MnO2-Titanate Nanotubes (MnO2-TNTs)

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

MnO2-TNTs were synthesized via a hydrothermal method at temperatures of 60°C, 80°C, 100°C, 125°C, and 150°C. The effect of synthesis temperature on the morphology and electrochemical properties of the MnO2-TNT (labeled as MT) electrode materials was investigated. The phase formation, morphology, and layered structure were characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. MnO2 was included in the titanate nanotube structure having a combination phase of birnessite-type MnO2 and H2Ti2O5·H2O. Fourier transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy were performed to study the surface functional groups and the surface chemical oxidation state, respectively. Gas adsorption analysis was conducted in order to study the specific surface area and the porosity. The capacitance was controlled by the surface capacitive and diffusion-controlled contributions. The sample synthesized at 80°C exhibited the highest specific capacitance of 155.06 F/g at a current density of 0.5 A/g, with cycling performance of 93.10% after 2000 cycles. It was found that the synthesis temperature affected the morphology, phase composition, specific surface area, and porosity of the prepared materials, in turn affecting in the electrochemical performance of the MnO2-TNT electrode materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Libich, J. Máca, J. Vondrák, O. Čech, and M. Sedlaříková, Supercapacitors: Properties and Applications. J. Energy Storage 17, 224 (2018).

    Article  Google Scholar 

  2. A. Chu, and P. Braatz, Comparison of Commercial Supercapacitors and High-Power Lithium-Ion Batteries for Power-Assist Applications in Hybrid Electric Vehicles: I. Initial Charact. J. Power Sources 112, 236 (2002).

    Article  CAS  Google Scholar 

  3. M. Bartłomiejczyk and S. Mirchevski, in 2014 16th Int. Power Electron. Motion Control Conf. Expo. (2014), pp. 94–101.

  4. Y. Zhan, Y. Guo, J. Zhu, and L. Li, Power and Energy Management of Grid/PEMFC/Battery/Supercapacitor Hybrid Power Sources for UPS Applications. Int. J. Electr. Power Energy Syst. 67, 598 (2015).

    Article  Google Scholar 

  5. G. Wang, L. Zhang, and J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 41, 797 (2012).

    Article  CAS  Google Scholar 

  6. B. Ye, J. Zhou, X. Cao, Q. Zhao, Y. Zhang, and J. Wang, Scalable CNTs/NiCoSe2 Hybrid Films for Flexible All-Solid-State Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 13, 53868 (2021).

    Article  CAS  Google Scholar 

  7. M. Iqbal, N.G. Saykar, A. Arya, I. Banerjee, P.S. Alegaonkar, and S. K. Mahapatra, High-Performance Supercapacitor Based on MoS2@TiO2 Composite for Wide Range Temperature Application. J. Alloys Compd. 883, 160705 (2021).

  8. Y. Qu, X. Tong, C. Yan, Y. Li, Z. Wang, S. Xu, D. Xiong, L. Wang, and P. K. Chu, Hierarchical Binder-Free MnO2/TiO2 Composite Nanostructure on Flexible Seed Graphite Felt for High-Performance Supercapacitors. Vacuum 181, 109648 (2020).

  9. X. Xia, Y. Zhang, D. Chao, Q. Xiong, Z. Fan, X. Tong, J. Tu, H. Zhang, and H.J. Fan, Tubular TiC Fibre Nanostructures as Supercapacitor Electrode Materials with Stable Cycling Life and Wide-Temperature Performance. Energy Environ. Sci. 8, 1559 (2015).

    Article  CAS  Google Scholar 

  10. S. Sundriyal, V. Shrivastav, M. Sharma, S. Mishra, and A. Deep, Significantly Enhanced Performance of RGO/TiO2 Nanosheet Composite Electrodes Based 1.8 V Symmetrical Supercapacitor with Use of Redox Additive Electrolyte. J. Alloys Compd. 790, 377 (2019).

  11. X. Lang, A. Hirata, T. Fujita, and M. Chen, Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors. Nat. Nanotechnol. 6, 232 (2011).

    Article  CAS  Google Scholar 

  12. M. Toupin, T. Brousse, and D. Bélanger, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chem. Mater. 16, 3184 (2004).

    Article  CAS  Google Scholar 

  13. H. Zhang, X.P. Gao, G.R. Li, T.Y. Yan, and H.Y. Zhu, Electrochemical Lithium Storage of Sodium Titanate Nanotubes and Nanorods. Electrochim. Acta 53, 7061 (2008).

    Article  CAS  Google Scholar 

  14. X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, X. Ge, I.M. Bacho, J. Tu, and H.J. Fan, Solution Synthesis of Metal Oxides for Electrochemical Energy Storage Applications. Nanoscale 6, 5008 (2014).

    Article  CAS  Google Scholar 

  15. W. Tang, X. Shan, S. Li, H. Liu, X. Wu, and Y. Chen, Sol-Gel Process for the Synthesis of Ultrafine MnO2 Nanowires and Nanorods. Mater. Lett. 132, 317 (2014).

    Article  CAS  Google Scholar 

  16. A.-C. Gaillot, D. Flot, V.A. Drits, A. Manceau, M. Burghammer, and B. Lanson, Structure of Synthetic K-Rich Birnessite Obtained by High-Temperature Decomposition of KMnO4. I. Two-Layer Polytype from 800°C Experiment. Chem. Mater. 15, 4666 (2003).

  17. P. Yu, X. Zhang, Y. Chen, Y. Ma, and Z. Qi, Preparation and Pseudo-Capacitance of Birnessite-Type MnO2 Nanostructures via Microwave-Assisted Emulsion Method. Mater. Mater. Chem. Phys. 118, 303 (2009).

    Article  CAS  Google Scholar 

  18. Y. Kumar, S. Chopra, A. Gupta, Y. Kumar, S.J. Uke, and S.P. Mardikar, Low Temperature Synthesis of MnO2 Nanostructures for Supercapacitor Application. Mater. Sci. Energy Technol. 3, 566 (2020).

    CAS  Google Scholar 

  19. B.H. Zhang, Y. Liu, Z. Chang, Y.Q. Yang, Z.B. Wen, and Y.P. Wu, Nanowire K0.19MnO2 from Hydrothermal Method as Cathode Material for Aqueous Supercapacitors of High Energy Density. Electrochimica Acta 130, 693 (2014).

  20. C.C. Raj, and R. Prasanth, Review—Advent of TiO2 Nanotubes as Supercapacitor Electrode. J. Electrochem. Soc. 165, E345 (2018).

    Article  CAS  Google Scholar 

  21. L. Zheng, C. Wang, Y. Dong, H. Bian, T.F. Hung, J. Lu, and Y.Y. Li, High-Performance Supercapacitors Based on Amorphous C-Modified Anodic TiO2 Nanotubes. Appl. Surf. Sci. 362, 399 (2016).

    Article  CAS  Google Scholar 

  22. H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, and L. Lu, High-Performance and Renewable Supercapacitors Based on TiO2 Nanotube Array Electrodes Treated by an Electrochemical Doping Approach. Electrochim. Acta 116, 129 (2014).

    Article  CAS  Google Scholar 

  23. L. Fornasini, S. Scaravonati, G. Magnani, A. Morenghi, M. Sidoli, D. Bersani, G. Bertoni, L. Aversa, R. Verucchi, M. Riccò, P.P. Lottici, and D. Pontiroli, In Situ Decoration of Laser-Scribed Graphene with TiO2 Nanoparticles for Scalable High-Performance Micro-Supercapacitors. Carbon 176, 296 (2021).

    Article  CAS  Google Scholar 

  24. W. Zhong, H. Sun, J. Pan, Y. Zhang, X. Yan, Y. Guan, W. Shen, and X. Cheng, Hierarchical Porous TiO2/Carbide-Derived Carbon for Asymmetric Supercapacitor with Enhanced Electrochemical Performance. Mater. Sci. Semicond. Process. 127, 105715 (2021).

  25. H. Zhou, and Y. Zhang, Enhanced Electrochemical Performance of Manganese Dioxide Spheres Deposited on a Titanium Dioxide Nanotube Arrays Substrate. J. Power Sources 272, 866 (2014).

    Article  CAS  Google Scholar 

  26. Y. Yuan, F. Chen, S. Yin, L. Wang, M. Zhu, J. Yang, Y. Wu, and S. Guo, Foam-like, 3-dimension mesoporous N-doped carbon-assembling TiO2 nanoparticles (P25) as high-performance anode material for lithium-ion batteries. J. Power Sources. 420, 38 (2019).

    Article  CAS  Google Scholar 

  27. Z. Yao, C. Cai, C. Li, J. Hou, J. Zhang, L. He, Y. Yang, X. Xia and J. Xiong, Novel Construction of Heterostructured FeTiO3/Fe2.75Ti0.25O4 Mesoporous Nanodisks with Both High Capacity and Stable Cycling Life for Lithium-Ion Storage. ACS Appl. Energy Mater. 4, 10380 (2021).

  28. Z. Zhao, Z. Xue, Q. Xiong, Y. Zhang, X. Hu, H. Chi, H. Qin, Y. Yuan, and H. Ni, Titanium niobium oxides (TiNb2O7): Design, fabrication and application in energy storage devices. Sustain. Mater. Technol. 30, 38 (2021).

    Google Scholar 

  29. J.H. Jung, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, and T. Shimizu, Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template. Chem. Mater. 14, 1445 (2002).

    Article  CAS  Google Scholar 

  30. Q. Shen, K. Katayama, T. Sawada, M. Yamaguchi, and T. Toyoda, Optical Absorption, Photoelectrochemical, and Ultrafast Carrier Dynamic Investigations of TiO2 Electrodes Composed of Nanotubes and Nanowires Sensitized with CdSe Quantum Dots. Jpn. J. Appl. Phys. 45, 5569 (2006).

    Article  CAS  Google Scholar 

  31. L. Shi, L. Cao, W. Liu, G. Su, R. Gao, and Y. Zhao, A Study on Partially Protonated Titanate Nanotubes: Enhanced Thermal Stability and Improved Photocatalytic Activity. Ceram. Int. 40, 4717 (2014).

    Article  CAS  Google Scholar 

  32. T.H.T. Vu, H.T. Au, L.T. Tran, T.M.T. Nguyen, T.T.T. Tran, M.T. Pham, M.H. Do, and D.L. Nguyen, Synthesis of Titanium Dioxide Nanotubes via One-Step Dynamic Hydrothermal Process. J. Mater. Sci. 49, 5617 (2014).

    Article  CAS  Google Scholar 

  33. L. Zhang, H. Lin, N. Wang, C. Lin, and J. Li, J. The Evolution of Morphology and Crystal Form of Titanate Nanotubes under Calcination and Its Mechanism. J. Alloys Compd. 431, 230 (2007).

  34. D.C. Manfroi, A. dos Anjos, A.A. Cavalheiro, L.A. Perazolli, J.A. Varela, and M.A. Zaghete, Titanate Nanotubes Produced from Microwave-Assisted Hydrothermal Synthesis: Photocatalytic and Structural Properties. Ceram. Int. 40, 14483 (2014).

    Article  CAS  Google Scholar 

  35. Y.X. Zhang, M. Kuang, X.D. Hao, Y. Liu, M. Huang, X.L. Guo, J. Yan, G.Q. Han, and J. Li, Rational Design of Hierarchically Porous Birnessite-Type Manganese Dioxides Nanosheets on Different One-Dimensional Titania-Based Nanowires for High Performance Supercapacitors. J. Power Sources 270, 675 (2014).

    Article  CAS  Google Scholar 

  36. J.-G. Wang, Y. Yang, Z.-H. Huang, and F. Kang, Coaxial Carbon Nanofibers/MnO2 Nanocomposites as Freestanding Electrodes for High-Performance Electrochemical Capacitors. Electrochim. Acta 56, 9240 (2011).

    Article  CAS  Google Scholar 

  37. K. Siwawongkasem, N. Prasoetsopha, P. Kasian, U. Wongpratat, and S. maensiri, The Effect of Ag Nanoparticles on Electrochemical Properties of Titanate Nanotubes Electrode Materials. Mater. Today Proc. 17, 1293 (2019).

  38. J. Yin, and X. Zhao, Electrorheological Properties of Titanate Nanotube Suspensions. Colloids Surf. Physicochem. Eng. Asp. 329, 153 (2008).

    Article  CAS  Google Scholar 

  39. K. Yoshida, L. Miao, N. Tanaka, and S. Tanemura, Direct Observation of TiO6 Octahedron Forming Titanate Nanotube by Advanced Transmission Electron Microscopy. Nanotechnology 20, 405709 (2009).

  40. M. Sarı Yılmaz, S. Kasap, and S. Pişkin, Preparation, Characterization and Thermal Dehydration Kinetics of Titanate Nanotubes. J. Therm. Anal. Calorim. 112, 1325 (2013).

  41. I.I. Misnon, R.A. Aziz, N.K.M. Zain, B. Vidhyadharan, S.G. Krishnan, and R. Jose, High Performance MnO2 Nanoflower Electrode and the Relationship between Solvated Ion Size and Specific Capacitance in Highly Conductive Electrolytes. Mater. Res. Bull. 57, 221 (2014).

    Article  CAS  Google Scholar 

  42. W. Hu, L. Li, G. Li, J. Meng, and W. Tong, Synthesis of Titanate-Based Nanotubes for One-Dimensionally Confined Electrical Properties. J. Phys. Chem. C 113, 16996 (2009).

    Article  CAS  Google Scholar 

  43. D.C.B. Alves, F.C. Fonseca, F.D. Brandão, K. Krambrock, and A.S. Ferlauto, Temperature Dependence of the Electrical Properties of Hydrogen Titanate Nanotubes. J. Appl. Phys. 116, 184307 (2014).

  44. G.A.M. Ali, L.L. Tan, R. Jose, M.M. Yusoff, and K.F. Chong, Electrochemical Performance Studies of MnO2 Nanoflowers Recovered from Spent Battery. Mater. Res. Bull. 60, 5 (2014).

    Article  CAS  Google Scholar 

  45. H.W. Nesbitt, and D. Banerjee, Interpretation of XPS Mn(2p) Spectra of Mn Oxyhydroxides and Constraints on the Mechanism of MnO2 Precipitation. Am. Mineral. 83, 305 (1998).

    Article  CAS  Google Scholar 

  46. Y. Wang, W. Lai, N. Wang, Z. Jiang, X. Wang, P. Zou, Z. Lin, H. Jin Fan, F. Kang, C.-P. Wong, and C. Yang, A Reduced Graphene Oxide/Mixed-Valence Manganese Oxide Composite Electrode for Tailorable and Surface Mountable Supercapacitors with High Capacitance and Super-Long Life. Energy Environ. Sci. 9, 145 (2016).

  47. T. Takashima, K. Hashimoto, and R. Nakamura, Mechanisms of PH-Dependent Activity for Water Oxidation to Molecular Oxygen by MnO2 Electrocatalysts. J. Am. Chem. Soc. 134, 1519 (2012).

    Article  CAS  Google Scholar 

  48. L. Li, J. Luo, Y. Liu, F. Jing, D. Su, and C. Wei, Self-Propagated Flaming Synthesis of Highly Active Layered CuO-δ-MnO2 Hybrid Composites for Catalytic Total Oxidation of Toluene. Pollutant. 26, 21798 (2017).

  49. H. Zhu, Q. Liu, J. Liu, R. Li, H. Zhang, S. Hu, and Z. Li, Construction of Porous Hierarchical Manganese Dioxide on Exfoliated Titanium Dioxide Nanosheets as a Novel Electrode for Supercapacitors. Electrochim. Acta 178, 758 (2015).

    Article  CAS  Google Scholar 

  50. D. Soumen, I. Kenji, M. Minoru, and F. Minoru, Reply to Comment on ‘Europium Doping Induced Symmetry Deviation and Its Impact on the Second Harmonic Generation of Doped ZnO Nanowires. Nanotechnology 25, 458002 (2014).

  51. J. He, M. Wang, W. Wang, R. Miao, W. Zhong, S.-Y. Chen, S. Poges, T. Jafari, W. Song, J. Liu, and S.L. Suib, Hierarchical Mesoporous NiO/MnO2@PANI Core-Shell Microspheres, Highly Efficient and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions. ACS Appl. Mater. Interfaces 9, 42676 (2017).

    Article  CAS  Google Scholar 

  52. R. Sadri, M. Hosseini, S.N. Kazi, S. Bagheri, N. Zubir, K.H. Solangi, T. Zaharinie, A. Badarudin, and A. Bio-Based, Facile Approach for the Preparation of Covalently Functionalized Carbon Nanotubes Aqueous Suspensions and Their Potential as Heat Transfer Fluids. J. Colloid Interface Sci. 504, 115 (2017).

    Article  CAS  Google Scholar 

  53. R.N. Reddy, and R.G. Reddy, Synthesis and Electrochemical Characterization of Amorphous MnO2 Electrochemical Capacitor Electrode Material. J. Power Sources 132, 315 (2004).

    Article  CAS  Google Scholar 

  54. L. Hu, R. Gao, A. Zhang, R. Yang, X. Zang, S. Wang, S. Yao, Z. Yang, H. Hao, and Y.-M. Yan, Cu2+ Intercalation Activates Bulk Redox Reactions of MnO2 for Enhancing Capacitive Performance. Nano Energy 74, 104891 (2020).

  55. J. Shao, X. Zhou, Q. Liu, R. Zou, W. Li, J. Yang, and J. Hu, Mechanism Analysis of the Capacitance Contributions and Ultralong Cycling-Stability of the Isomorphous MnO2@MnO2 Core/Shell Nanostructures for Supercapacitors. J. Mater. Chem. A 3, 6168 (2015).

    Article  CAS  Google Scholar 

  56. T. Zhu, S.J. Zheng, Y.G. Chen, J. Luo, H.B. Guo, and Y.E. Chen, Improvement of Hydrothermally Synthesized MnO2 Electrodes on Ni Foams via Facile Annealing for Supercapacitor Applications. J. Mater. Sci. 49, 6118 (2014).

    Article  CAS  Google Scholar 

  57. Z.Y. Leong, and H.Y. Yang, A Study of MnO2 with Different Crystalline Forms for Pseudocapacitive Desalination. ACS Appl. Mater. Interfaces 11, 13176 (2019).

    Article  CAS  Google Scholar 

  58. G. Zhu, L. Deng, J. Wang, L. Kang, and Z.-H. Liu, Hydrothermal Preparation and the Capacitance of Hierarchical MnO2 Nanoflower. Colloids Surf. Physicochem. Eng. Asp. 434, 42 (2013).

    Article  CAS  Google Scholar 

  59. L. Zhao, W. Wang, H. Zhao, M. Wang, B. Ge, X. Shao, and W. Li, Controlling Oxygen Vacancies through Gas-Assisted Hydrothermal Method and Improving the Capacitive Properties of MnO2 Nanowires. Appl. Surf. Sci. 491, 24 (2019).

    Article  CAS  Google Scholar 

  60. X. Zhang, X. Sun, H. Zhang, C. Li, and Y. Ma, Comparative Performance of Birnessite-Type MnO2 Nanoplates and Octahedral Molecular Sieve (OMS-5) Nanobelts of Manganese Dioxide as Electrode Materials for Supercapacitor Application. Electrochim. Acta 132, 315 (2014).

    Article  CAS  Google Scholar 

  61. Y. Luo, D. Kong, J. Luo, S. Chen, D. Zhang, K. Qiu, X. Qi, H. Zhang, C.M. Li, and T. Yu, Hierarchical TiO2 Nanobelts@MnO2 Ultrathin Nanoflakes Core–Shell Array Electrode Materials for Supercapacitors. RSC Adv 3, 14413 (2013).

    Article  CAS  Google Scholar 

  62. Y. Xin Zhang, F. Li, and M. Huang, One-step Hydrothermal Synthesis of Hierarchical MnO2-Coated CuO Flower-Like Nanostructures with Enhanced Electrochemical Properties for Supercapacitor. Mater. Lett. 112, 203 (2013).

  63. Sunaina, P. Chand, A. Joshi, S. Lal, and V. Singh, Effect of Hydrothermal Temperature on Structural, Optical and Electrochemical Properties of α-MnO2 Nanostructures for Supercapacitor Application. Chem. Phys. Lett. 777, 138742 (2021).

  64. C. Tanggarnjanavalukul, N. Phattharasupakun, K. Kongpatpanich, and M. Sawangphruk, Charge Storage Performances and Mechanisms of MnO2 Nanospheres, Nanorods. Nanotubes and Nanosheets. Nanoscale 9, 13630 (2017).

    Article  CAS  Google Scholar 

  65. F.N.I. Sari, P.-R. So, and J.-M. Ting, MnO2 with Controlled Phase for Use in Supercapacitors. J. Am. Ceram. Soc. 100, 1642 (2017).

    Article  CAS  Google Scholar 

  66. P. Gao, P. Metz, T. Hey, Y. Gong, D. Liu, D.D. Edwards, J.Y. Howe, R. Huang, and S.T. Misture, The Critical Role of Point Defects in Improving the Specific Capacitance of δ-MnO2 Nanosheets. Nat. Commun. 8, 14559 (2017).

    Article  CAS  Google Scholar 

  67. W. He, W. Yang, C. Wang, X. Deng, B. Liu, and X. Xu, Morphology-Controlled Syntheses of α-MnO2 for Electrochemical Energy Storage. Phys Chem Chem Phys 18, 15235 (2016).

    Article  CAS  Google Scholar 

  68. X. Zhang, P. Yu, H. Zhang, D. Zhang, X. Sun, and Y. Ma, Rapid Hydrothermal Synthesis of Hierarchical Nanostructures Assembled from Ultrathin Birnessite-Type MnO2 Nanosheets for Supercapacitor Applications. Electrochim. Acta 89, 523 (2013).

    Article  CAS  Google Scholar 

  69. S. Ahmed, Z.H. Khan, and M. Rafat, Studies on MnO2 Nanorods and Their Application for Supercapacitor. Curr. Nanomater. 2, 45 (2017).

    Article  CAS  Google Scholar 

  70. S. Xi, Y. Zhu, Y. Yang, and Y. Liu, Direct Synthesis of MnO2 Nanorods on Carbon Cloth as Flexible Supercapacitor Electrode. J. Nanomater. 2017, 7340961 (2017).

    Article  CAS  Google Scholar 

  71. J.-L. Liu, L.-Z. Fan, and X. Qu, Low Temperature Hydrothermal Synthesis of Nano-Sized Manganese Oxide for Supercapacitors. Electrochim. Acta 66, 302 (2012).

    Article  CAS  Google Scholar 

  72. X. Ning, X. Wang, X. Yu, J. Zhao, M. Wang, H. Li, and Y. Yang, Outstanding Supercapacitive Properties of Mn-Doped TiO2 Micro/Nanostructure Porous Film Prepared by Anodization Method. Sci. Rep. 6, 22634 (2016).

    Article  CAS  Google Scholar 

  73. Z. Zhang, Z. Yao, Y. Meng, D. Li, Q. Xia, and Z. Jiang, Construction of TiO2 Nanotubes/C/MnO2 Composite Films as a Binder-Free Electrode for a High-Performance Supercapacitor. Inorg. Chem. 58, 1591 (2019).

    Article  CAS  Google Scholar 

  74. H. Zhou, and Y. Zhang, Electrochemically Self-Doped TiO2 Nanotube Arrays for Supercapacitors. J. Phys. Chem. C 118, 5626 (2014).

    Article  CAS  Google Scholar 

  75. C. Zhou, Y. Zhang, Y. Li, and J. Liu, Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Lett. 13, 2078 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the SUT-NANOTEC-SLRI joint research facility (BL5.3), Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand for XPS facilities. Thanks to Suranaree University of Technology (SUT) and the Office of the Higher Education Commission under NRU Project of Thailand and SUT-NANOTEC RNN on Nanomaterials and Advanced Characterizations, Suranaree University of Technology, Nakhon Ratchasima, Thailand. This work was supported by (i) Suranaree University of Technology (SUT), (ii) Thailand Science Research and Innovation (TSRI), and (iii) National Science, Research and Innovation Fund (NSRF) under project code 90464. Also, this work was supported by (i) Suranaree University of Technology (SUT), (ii) Thailand Science Research and Innovation (TSRI), and (iii) National Science, Research and Innovation Fund (NSRF) (42851).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Maensiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1006 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siwawongkasem, K., Senanon, W. & Maensiri, S. Hydrothermal Synthesis, Characterization, and Electrochemical Properties of MnO2-Titanate Nanotubes (MnO2-TNTs). J. Electron. Mater. 51, 3188–3204 (2022). https://doi.org/10.1007/s11664-022-09550-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09550-6

Keywords

Navigation