Skip to main content

Advertisement

Log in

Highly Active Nitrogen-Doped Mesoporous Carbon Materials for Supercapacitors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Supercapacitors have the advantage of high power output, which enables their broad applications in sustainable power supply systems. However, to realize mass production and application, electrode materials with low cost, environmentally friendliness, and long cycle stability are prerequisites. Herein, using glucose and ammonia as the carbon and nitrogen source, respectively, nitrogen-doped mesoporous network-like carbon materials (NMNCs) were obtained by a facile hydrothermal and calcination coupling method. NMNC produced by heat treatment in ammonia atmosphere at 1000°C for 3 h (denoted as NMNC-1000) exhibits an extremely high nitrogen-doped specific surface area (2588.8 m2 g−1) and optimal mesoporous structure, which facilitates mass transport and exposes more active sites. Under the synergistic effect of nitrogen doping and specific surface area, the NMNC-1000 manifests superior electrochemical supercapacitive properties with a high specific capacitance of 195 F g−1 at a charge and discharge current of 0.1 A g−1 in 6 mol L−1 KOH solution as well as capacitance retention rate of 71% to the counterparts. This work provides the design of promising electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. M.F. El-Kady, V. Strong, S. Dubin, and R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326 (2012).

    Article  CAS  Google Scholar 

  2. J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang, J. Zhang, I.S. Amiinu, and S. Mu, Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem. Int. Ed. Engl. 58, 3859 (2019).

    Article  CAS  Google Scholar 

  3. L. Yue, H. Zhao, Z. Wu, J. Liang, S. Lu, G. Chen, S. Gao, B. Zhong, X. Guo, and X. Sun, Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. J. Mater. Chem. A 8, 11493 (2020).

    Article  CAS  Google Scholar 

  4. Y. Zhou, H. Qi, J. Yang, Z. Bo, F. Huang, M.S. Islam, X. Lu, L. Dai, R. Amal, C.H. Wang, and Z. Han, Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci. 14, 1854 (2021).

    Article  CAS  Google Scholar 

  5. J. Yan, S. Li, B. Lan, Y. Wu, and P.S. Lee, Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv. Funct. Mater. 30, 1902564 (2020).

    Article  CAS  Google Scholar 

  6. J. Liang, C. Jiang, and W. Wu, Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs. Nanoscale 11, 7041 (2019).

    Article  CAS  Google Scholar 

  7. H. Liu, M. Han, J. Zuo, X. Deng, W. Lu, Y. Wu, H. Song, C. Zhou, and S. Ji, Heteroatom-doped hollow carbon spheres made from polyaniline as an electrode material for supercapacitors. RSC Adv. 9, 15868 (2019).

    Article  CAS  Google Scholar 

  8. L. Jiang, and Z. Fan, Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6, 1922 (2014).

    Article  CAS  Google Scholar 

  9. W. Chaikittisilp, M. Hu, H. Wang, H.S. Huang, T. Fujita, K.C. Wu, L.C. Chen, Y. Yamauchi, and K. Ariga, Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem. Commun. 48, 7259 (2012).

    Article  CAS  Google Scholar 

  10. Y. Wu, H. Zhao, Z. Wu, L. Yue, J. Liang, Q. Liu, Y. Luo, S. Gao, S. Lu, G. Chen, X. Shi, B. Zhong, X. Guo, and X. Sun, Rational design of carbon materials as anodes for potassium-ion batteries. Energy Stor. Mater. 34, 483 (2021).

    Google Scholar 

  11. X. Li, and B. Wei, Supercapacitors based on nanostructured carbon. Nano Energy 2, 159 (2013).

    Article  CAS  Google Scholar 

  12. M. Xu, Q. Yu, Z. Liu, J. Lv, S. Lian, B. Hu, L. Mai, and L. Zhou, Tailoring porous carbon spheres for supercapacitors. Nanoscale 10, 21604 (2018).

    Article  CAS  Google Scholar 

  13. R.R. Salunkhe, S.H. Hsu, K.C. Wu, and Y. Yamauchi, Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. Chemsuschem 7, 1551 (2014).

    Article  CAS  Google Scholar 

  14. Y.Z. Zhang, T. Cheng, Y. Wang, W.Y. Lai, H. Pang, and W. Huang, A simple approach to boost capacitance: flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv. Mater. 28, 5242 (2016).

    Article  CAS  Google Scholar 

  15. J. Liu, N.P. Wickramaratne, S.Z. Qiao, and M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14, 763 (2015).

    Article  CAS  Google Scholar 

  16. Y. Yan, G. Chen, P. She, G. Zhong, W. Yan, B.Y. Guan, and Y. Yamauchi, Mesoporous nanoarchitectures for electrochemical energy conversion and storage. Adv. Mater. 32, 2004654 (2020).

    Article  CAS  Google Scholar 

  17. L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang, Y. Li, X. Ren, H. Mi, L. Deng, and Z. Zheng, Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30, 1706054 (2018).

    Article  Google Scholar 

  18. H. Liu, Y. Zhang, Q. Ke, K.H. Ho, Y. Hu, and J. Wang, Tuning the porous texture and specific surface area of nanoporous carbons for supercapacitor electrodes by adjusting the hydrothermal synthesis temperature. J. Mater. Chem. A 1, 12962 (2013).

    Article  CAS  Google Scholar 

  19. Y. Lu, J. Liang, S. Deng, Q. He, S. Deng, Y. Hu, and D. Wang, Hypercrosslinked polymers enabled micropore-dominant N, S Co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 65, 103993 (2019).

    Article  CAS  Google Scholar 

  20. V. Sattayarut, T. Wanchaem, P. Ukkakimapan, V. Yordsri, P. Dulyaseree, M. Phonyiem, M. Obata, M. Fujishige, K. Takeuchi, W. Wongwiriyapan, and M. Endo, Nitrogen self-doped activated carbonsviathe direct activation of Samanea samanleaves for high energy density supercapacitors. RSC Adv. 9, 21724 (2019).

    Article  CAS  Google Scholar 

  21. L. Yue, C. Ma, S. Yan, Z. Wu, W. Zhao, Q. Liu, Y. Luo, B. Zhong, F. Zhang, Y. Liu, A.A. Alshehri, K.A. Alzahrani, X. Guo, and X. Sun, Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage. Nano Res. 15, 186 (2021).

    Article  Google Scholar 

  22. L. Hao, X. Li, and L. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25, 3899 (2013).

    Article  CAS  Google Scholar 

  23. Z. Sun, S. Shen, L. Ma, D. Mao, and G. Lu, Controlled synthesis of N-doped carbon spheres with different morphologies for supercapacitors. RSC Adv. 6, 104642 (2016).

    Article  CAS  Google Scholar 

  24. J. Zhang, G. Chen, Q. Zhang, F. Kang, and B. You, Self-assembly synthesis of N-doped carbon aerogels for supercapacitor and electrocatalytic oxygen reduction. ACS Appl. Mater. Inter. 7, 12760 (2015).

    Article  CAS  Google Scholar 

  25. U. Jeong, H. Kim, S. Ramesh, N.A. Dogan, S. Wongwilawan, S. Kang, J. Park, E.S. Cho, and C.T. Yavuz, Rapid access to ordered mesoporous carbons for chemical hydrogen storage. Angew. Chem. Int. Ed. Engl. 60, 22478 (2021).

    Article  CAS  Google Scholar 

  26. B. Bayatsarmadi, Y. Zheng, M. Jaroniec, and S.Z. Qiao, Soft-Templating synthesis of N-doped mesoporous carbon nanospheres for enhanced oxygen reduction reaction. Chem Asian J. 10, 1546 (2015).

    Article  CAS  Google Scholar 

  27. J. Tang, J. Liu, C. Li, Y. Li, M.O. Tade, S. Dai, and Y. Yamauchi, Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem. Int. Ed. Engl. 54, 588 (2015).

    CAS  Google Scholar 

  28. A.V. Talyzin, G. Mercier, A. Klechikov, M. Hedenström, D. Johnels, D. Wei, D. Cotton, A. Opitz, and E. Moons, Brodie vs Hummers graphite oxides for preparation of multi-layered materials. Carbon 115, 430 (2017).

    Article  CAS  Google Scholar 

  29. Y. Xu, B. Ren, S. Wang, L. Zhang, and Z. Liu, Carbon aerogel-based supercapacitors modified by hummers oxidation method. J. Colloid Interface Sci. 527, 25 (2018).

    Article  CAS  Google Scholar 

  30. J. Liang, X. Du, C. Gibson, X.W. Du, and S.Z. Qiao, N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 25, 6226 (2013).

    Article  CAS  Google Scholar 

  31. L. Wang, A. Ambrosi, and M. Pumera, “Metal-free” catalytic oxygen reduction reaction on heteroatom- doped graphene is caused by trace metal impurities. Angew. Chem. Int. Ed. Engl. 52, 13818 (2013).

    Article  CAS  Google Scholar 

  32. G. Wang, J. Huang, S. Chen, Y. Gao, and D. Cao, Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J. Power Sources 196, 5756 (2011).

    Article  CAS  Google Scholar 

  33. D. Li, C. Lv, L. Liu, Y. Xia, X. She, S. Guo, and D. Yang, Egg-box structure in cobalt alginate: a new approach to multifunctional hierarchical mesoporous N-doped carbon nanofibers for efficient catalysis and energy storage. ACS Cent. Sci. 1, 261 (2015).

    Article  CAS  Google Scholar 

  34. G. Tao, L. Zhang, L. Chen, X. Cui, Z. Hua, M. Wang, J. Wang, Y. Chen, and J. Shi, N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon 86, 108 (2015).

    Article  CAS  Google Scholar 

  35. W.J. Lee, J. Lim, and S.O. Kim, Nitrogen dopants in carbon nanomaterials: defects or a new opportunity? Small Methods 1, 1600014 (2017).

    Article  Google Scholar 

  36. Y. Qiu, M. Hou, J. Gao, H. Zhai, H. Liu, M. Jin, X. Liu, and L. Lai, One-step synthesis of monodispersed mesoporous carbon nanospheres for high-performance flexible quasi-solid-state micro-supercapacitors. Small 15, 1903836 (2019).

    Article  CAS  Google Scholar 

  37. Z. Shen, J. Du, Y. Mo, and A. Chen, Nanocomposites of reduced graphene oxide modified with mesoporous carbon layers anchored by hollow carbon spheres for energy storage. Carbon 173, 22 (2021).

    Article  CAS  Google Scholar 

  38. J. Chen, H. Zhang, P. Liu, Y. Li, G. Li, T. An, and H. Zhao, Thiourea sole doping reagent approach for controllable N, S co-doping of pre-synthesized large-sized carbon nanospheres as electrocatalyst for oxygen reduction reaction. Carbon 92, 339 (2015).

    Article  CAS  Google Scholar 

  39. W.-J. Liu, H. Jiang, and H.-Q. Yu, Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ. Sci. 12, 1751 (2019).

    Article  CAS  Google Scholar 

  40. Z. Lei, L. Lu, and X.S. Zhao, The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ. Sci. 5, 6391 (2012).

    Article  CAS  Google Scholar 

  41. N.D. Kim, W. Kim, J.B. Joo, S. Oh, P. Kim, Y. Kim, and J. Yi, Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation. J. Power Sources 180, 671 (2008).

    Article  CAS  Google Scholar 

  42. J.S. Chae, N.-S. Heo, C.H. Kwak, W.-S. Cho, G.H. Seol, W.-S. Yoon, H.-K. Kim, D.J. Fray, A.T.E. Vilian, Y.-K. Han, Y.S. Huh, and K.C. Roh, A biocompatible implant electrode capable of operating in body fluids for energy storage devices. Nano Energy 34, 86 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Shanxi Provincial Excellent Talents in science and technology innovation project (201605D211012) and the Applied Basic Research Project of Shanxi province(No. 201801D221058).

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Congxiu Guo or Xili Tong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Guo, C., Guo, X. et al. Highly Active Nitrogen-Doped Mesoporous Carbon Materials for Supercapacitors. J. Electron. Mater. 51, 1021–1028 (2022). https://doi.org/10.1007/s11664-021-09358-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09358-w

Keywords

Navigation